

AFRL-IF-WP-TR-2006-1578

ENLIGHTENED MULTISCALE
SIMULATION OF BIOCHEMICAL
NETWORKS
Core Theory, Validating Experiments, and
Implementation in Open Software

John C. Doyle
Michael Hucka
California Institute of Technology
1200 E. California Blvd.
Pasadena, CA 91125

OCTOBER 2006

Final Report for 01 September 2001 – 31 July 2006

Approved for public release; distribution is unlimited.

STINFO COPY

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
(AFRL/WS) Public Affairs Office and is available to the general public, including foreign
nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-IF-WP-TR-2006-1578 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//
JAMES B. MONCRIEF, Proj Eng KENNETH LITTLEJOHN, Actg Chief
Embedded Information Systems Branch Embedded Information Systems Branch
Advanced Computing Division Advanced Computing Division
Information Directorate Information Directorate

//Signature//
JAMES S. WILLIAMSON, Actg Chief
Wright Site
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2006 Final 09/01/2001 – 07/31/2006
5a. CONTRACT NUMBER

F30602-01-2-0558
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

ENLIGHTENED MULTISCALE SIMULATION OF BIOCHEMICAL
NETWORKS
Core Theory, Validating Experiments, and Implementation in Open Software 5c. PROGRAM ELEMENT NUMBER

61101E
5d. PROJECT NUMBER

BIOC
5e. TASK NUMBER

M3

6. AUTHOR(S)

John C. Doyle
Michael Hucka

5f. WORK UNIT NUMBER

 05
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

California Institute of Technology
1200 E. California Blvd.
Pasadena, CA 91125

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL-IF-WP Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334

Defense Advanced Research Projects
Agency/Information Processing
Technology Office (DARPA/IPTO)
3701 Fairfax Drive
Arlington, VA 22203

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-IF-WP-TR-2006-1578

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Report contains color. PAO Case Number: AFRL/WS 07-0326, 21 Feb 2007.

14. ABSTRACT
The objective of the research is to develop mathematical and software infrastructure in support of post-genomics
research in systems biology. One objective articulated in this effort centers on a deeper understanding of the
organizational principles of biological networks. A distinguishing theme of this work is its focus on scalable methods of
robustness and model validation and invalidation with data, as opposed to relying purely on simulation. The Systems
Biology Markup Language (SBML) project is a machine-readable exchange language for computational models of
biochemical networks. LibSBML, an embedded software library for SBML, was developed, providing an application
programming interface for working with SBML. The LibSBML library provides an interface for working with SBML in
a number of programming languages: C, C++, Java, Perl, MATLAB, Lisp, and Python. It is free, open-source, and
portable to Linux, Windows, MacOS and Solaris. The effort led to 1) continued development of LibSBML, (increased
support of SBML features and added functionality); and 2) supported SBML use and evolution (direct support for
DARPA Bio-SPICE).

15. SUBJECT TERMS
systems biology, simulation, robustness, markup languages, Systems Biology Markup Language (SBML)

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 80
 James B. Moncrief
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3606

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Contents

1 Project Goals 3
1.1 Sum of Squares (SOS) Framework and SOSTOOLS 3

1.1.1 The Organization of Biological Networks . 5
1.1.2 Robust yet fragile systems . 5
1.1.3 Robust and Scalable Validation of Models Against Data 6

1.2 SBML . 7
1.2.1 Motivations for Developing SBML . 8
1.2.2 The Form and Features of SBML . 9
1.2.3 Relationships to Other Representation Languages 10
1.2.4 LibSBML: Software Infrastructure for SBML 10
1.2.5 Advantages of a Dedicated Library for SBML 10

2 Approach/Problems to be Addressed 11
2.1 Sum of Squares (SOS) Framework and SOSTOOLS 11

2.1.1 Sums of Squares and SOS Programs . 12
2.1.2 Algebra and Optimization . 14
2.1.3 SOSTOOLS . 16

2.2 SBML . 17
2.2.1 Continued Development of libSBML . 17
2.2.2 Support of SBML Use and Evolution . 19

3 Accomplishments of the Project 20
3.1 Towards the Multiscale Simulation of Biochemical Networks 20

3.1.1 Mathematical Background . 20
3.1.2 Application to Gene Regulatory Networks . 27
3.1.3 Model Validation/Invalidation for the G-Protein Signaling in Yeast 41
3.1.4 Optimization-Based Methods for System Verification 44
3.1.5 Stochastic Simulation . 46
3.1.6 Sum of Squares (SOS) Framework and SOSTOOLS 49

3.2 SBML . 54
3.2.1 Continued Development of libSBML . 54
3.2.2 Support of SBML Use and Evolution . 64

4 Summary 66
4.1 Sum of Squares (SOS) Framework and SOSTOOLS 66
4.2 SBML . 66

1

List of Figures

1 Molecular implementation of the heat shock response system 29
2 Plots of σ32 (a) and unfolded proteins (b) in the heat shock response system 31
3 Robust stability of the model of Heat Shock in E-coli. 32
4 Switching between equilibria in the λ system caused by noise 35
5 Setup for computing the bound of the probability of false switching because of noise,

for system (40). 36
6 Probability of false switching from the high steady to the low steady state as a

function of time under the influence of noise. The blue line depicts probabilities
computed through the use of barrier functions while the green line depicts the prob-
abilities computed from 2000 realizations obtained from direct simulations of the
SDE. 37

7 Upper and lower bounds on probability of escaping a neighborhood of the high
equilibrium, computed using the Barrier technique. 38

8 Phase plane for system (45–46). Arrows denote the vector field, solid lines are tra-
jectories from initial conditions denoted by ‘*’. Equilibria are shown by ‘+’ (stable)
and ‘�’ (unstable). The solid thick line is a separatix - it divides the phase plane in
two, so that if the deterministic system is initialized in one region then all trajecto-
ries flow towards one equilibrium, whereas if the system is initialized in the other all
trajectories flow to the other equilibrium. 39

9 Upper bound on switching probability from the higher equilibrium as a function of
the number of molecules in the system . 41

10 Shaded region includes the feasible parameter space allowed by data. 44
11 Lines with varying slopes bound the feasible parameter region. 44

List of Tables

1 Infeasibility certificates and associated computational techniques. 16
2 Parameter Values for Heat Shock model . 30

2

1 Project Goals

The overall long-term objective of our research is to develop mathematical and software infrastruc-
ture in support of post-genomics research in systems biology. One near-term objective articulated
in this abstract centers on a deeper understanding of the organizational principles of biological
networks. A distinguishing theme of this work is its focus on scalable methods of robustness and
model (in)validation with data, as opposed to relying purely on simulation. In computability terms,
if simulation is viewed as a way to attack the NP hard side of biological problems, our approach
attacks the coNP side. Much of the success of reductionist biology has depended on creative individ-
uals who draw biologically meaningful inferences from data and computation using small scale and
informal reasoning. This type of inference was critical because the reductionist research program
itself offered no systematic tools to deal with complexity, only with the component parts. Far from
being dispensed with, this reasoning process and its biological content must be both formalized
and made rigorous, systematic, and scalable as well, and ultimately teachable. This requires the
development of new mathematics as well as algorithms and software.

A central goal of modeling and simulation is to connect molecular mechanisms to network
function to questions of biomedical relevance. Unfortunately, many of the most critical questions
involve events which are extremely rare at the individual cell level where the mechanisms act
yet catastrophic to the organism. Thus simulation methods that may be adequate for studying
generic or typical behavior are entirely inadequate to explore such worst-case scenarios, which with
conventional methods are computational intractable. We are extending the best-practice tools
and algorithms for robustness analysis that have become standards in engineering to models of
biological relevance, which are typically nonlinear, hybrid, uncertain, and stochastic. This includes
integrating formal inference methods from the previously fragmented theories in Computer Science
with those of Control and Dynamical Systems. This involves deep mathematical challenges that
parallel those for technological networks, for which we have made dramatic progress, and on which
we are building new tools for systems biology.

1.1 Sum of Squares (SOS) Framework and SOSTOOLS

Biological networks connect devices of enormous complexity and sophistication even at their molec-
ular level into modular components for sensing, signal processing, communication, computation,
and actuation. These components are further integrated into vast regulatory networks with layers of
feedback. No one doubts the vast range of capabilities that a deep understanding of this biological
complexity would enable, but beyond the need for improved experimental technology, and sophisti-
cated bionformatics to manage the data such improvements would continue to yield, there is little
consensus as to exactly what further must be done. We claim that the overwhelmingly greatest
source of complexity and the least current understanding lies in the signaling, communications, and
computation modules, and even more so in the feedback control systems that they comprise. The
solution to the challenge of biological complexity may not be to fundamentally change the way in
which current molecular biology research is done so much as to augment this research with a new
way of thinking about the systems integration issue itself.

Despite its enormous success, the reductionist program provides a poor foundation for many
new technical challenges. For example, the ubiquitous connectivity and flexibility of the Internet
as observed by the user is taken for granted, as are the wires, chips, and displays that make up
the hardware, but it is rare for nonexperts to be aware of the complex layers of protocols and
feedback regulation that makes the Internet’s flexibility and robustness possible. Until recently,
there has been limited theoretical support for the study of the systems-level challenges in either

3

internetworking or biology, and limited academic research. Nevertheless, for some time there has
been a widely shared vision there could be universal features of complex systems that can transcend
these reductionist decompositions [22,25,132], and provide a unifying integration. Sharp differences
have arisen however with regard to exactly what those features are. We believe there is now a clear,
compelling, and coherent path emerging from the striking convergence of the three research themes
of biology, technology, and mathematics.

First, biologists have provided a detailed description of the components of biological networks,
and many organizational principles of these networks are becoming increasingly apparent. Second,
advanced information technologies have enabled engineering systems to approach biology in their
complexity. We are developing new theories that elucidate these similarities that are comparable
in depth and richness with those available for more traditional subdisciplines. While these share
with their traditional counterparts many of the domain-specific assumptions that overcome the
intractability of more general formulations, this progress has sharpened the mathematical questions
that are relevant to these important application domains. Thus we have the beginnings of the first
coherent, complete theoretical foundation of the Internet [64,65,74,75,121,133], and have also been
developing new theory and software infrastructure to support systems biology [25, 31, 34, 45, 57,
130]. We are making rigorous and precise the notion that this apparent network-level evolutionary
convergence within and between biology and technology is not accidental, but follows necessarily
from the universal requirements of efficiency and robustness.

While the full consequences of the claimed convergence emerging from these two areas will
take years to be fully resolved, an important message is now clear. The method of decomposing
complex systems into vertical layers of varying complexity and scale, wherein each layer is further
decomposed horizontally into modules, appears to be not only ubiquitous but necessary. It is neither
an accident of evolution nor merely an artificial construct imposed by humans to make biology and
technology comprehensible, although that may be a wonderfully serendipitous side-effect. Thus we
do not advocate abandoning the reductionist program of decomposing complexity, but in managing
the process more consciously and systematically. The disciplinary decompositions that exist may
indeed be historical artifices, but the need for such decompositions is not. The key to creating an
integrated approach to understanding, exploiting, and mimicking biological complexity is not to
replace existing technologies, but to augment them with a more flexible and rigorous technology
for decomposition and recomposition.

Finally, the mathematical foundation is being developed for a far more unified theory of complex
systems that overcomes the intractability that forced the disciplinary fragmentation in the first
place, and this is the most important development for this project. It is in retrospect unsurprising
that a genuinely new science of complexity, particularly biological, would require equally new
mathematics to answer basic universal questions such as: Is a model consistent with experimental
data, which may come from extremely heterogeneous sources? If so, is it robust to additional
perturbations that are plausible but untested? Are different models at multiple scales of resolution
consistent? What is the most promising experiment to refute or refine a model? These questions are
all naturally nonlinear, nonequilibrium, uncertain, hybrid and so on, and their analysis has relied
mainly on simulation. Unfortunately, simulation alone is inadequate. One computer simulation
produces one example of one time history for one set of parameters and initial conditions. Thus
simulations can only ever provide counterexamples to hypotheses about the behavior of a complex
system, and can never provide proofs. (In technical terms, they can in principle provide satisfactory
solutions to questions in NP, but not to questions in coNP.) Simulations can never prove that a given
behavior or regularity is necessary and universal; they can at best show that a behavior is generic or
typical. What is needed is an effective (and scalable) method for, in essence, systematically proving
robustness properties of nonlinear dynamical systems. The possibility of such a thing (especially

4

without P=NP=coNP in computational complexity theory) is profound and remarkable, and it is
the foundation of our approach.

1.1.1 The Organization of Biological Networks

One of our goals is to develop a theory of biological organization that exploits the features of
evolution and robustness to constrain the search spaces in our analysis algorithms. Specifically,
our computational methods for modeling from data, simulation, and robustness analysis need not
solve arbitrary unstructured problems, which are certainly intractable, but only those that are
biologically meaningful. Biological systems at every level of organization are highly structured,
far from equilibrium, persist there robustly despite fluctuations in their environment and their
components, and have evolved to this highly organized state. This places constraints on biological
organization that has some parallels in technology but none in the other sciences. Algorithms that
exploit this organization can be almost arbitrarily more efficient and reliable than those that do not,
but it requires a rigorous theory to connect the robustness and evolvability of biological networks,
with algorithms for modeling and system identification, analysis, and simulation. All of our results
so far are extremely encouraging, but are merely the beginning of what we believe is possible.

Our main effort on organizational principles is to identify the features of biological networks, as
opposed to arbitrary sets of chemical reactions, that make automatic and scalable computational
methods feasible, even when the computational complexity classes are worst-case exponential or
worse. A smaller effort has been focused on additionally elucidating organizational principles to
provide greater understanding of biological complexity. We want to help answer the question
“what is all this complexity for?” [59]. This will have a huge impact on computation, but the
results can go beyond that. In particular, our program could be viewed as thinking of biological
networks as a kind of technological network built on the physical substrate of biochemistry, as
opposed to, say, the CMOS VLSI and fiber optics of the Internet. Biological networks integrate
controls, communications, and computing in a way that engineers are just beginning to understand
in a deeply theoretical way, and we have had great success on the forefront of those efforts. By
explicitly connecting the theoretical challenges in advanced technological and biological networks,
there is the promise for substantial synergy, and there is strong evidence already that this approach
will bring novel insights to both areas [2, 24,29,55,62,111,118].

1.1.2 Robust yet fragile systems

An emphasis on scalable and provably correct analysis methods is not just for mathematical com-
pleteness, but is driven by a ubiquitous property of complex engineering and natural networked
systems: they are robust yet fragile (RYF). Complex networks can provide remarkable robust-
ness despite large perturbations in their environments and component parts, but they can also
be extremely fragile to cascading failure events triggered by relatively small perturbations. We
experience various illnesses, crashes due to software bugs, viruses, worms, and denial-of-services
attacks, power glitches, security screenings, etc, as annoying but rarely catastrophic. Typically,
our networks protect us. But cancer and other epidemics, chronic auto-immunity, market crashes,
terrorist attacks, large power outages and fires, etc, remind us that our complexity has a price.
Indeed, most dollars and lives lost in natural and technological disasters happen in the few largest
events, while the typical event is so small as to usually go unreported.

Many current military technical visions convincingly suggests that network complexity can
provide robustness and efficiency that ultimately greatly exceeds that of comparable brute force
approaches. The ultimate challenge will not be to make this apparent in demonstrations and typical

5

scenarios, but to avoid the rare but catastrophic failures that seem to inevitably accompany new
levels of complexity. Unfortunately, the entire scientific enterprise of experimentation, modeling,
and simulation of complex systems has been most successful at studying their typical or generic
behaviors. Thus it should be no surprise that the rigorous study of the fragility of complex systems
would require new methods.

That the intrinsically “robust yet fragile” (RYF) nature of complex systems [20–22,29,100,132]
has the computational counterpart of “dual complexity implies primal fragility” is a key feature
of our approach. Practically speaking, this completely changes what is possible computationally.
Organisms, ecosystems, and successful advanced technologies are highly constrained in that they
are not evolved/designed arbitrarily, but necessarily in ways that are robust to uncertainties in their
environment and their component parts. These are extremely severe constraints, not present in
other sciences but essential in both biology and engineering. The most obvious feature is that their
macroscopic system properties can be both extremely robust to most microscopic details yet hyper-
fragile to a few, and this must shape both modeling and analysis, and the experimental process that
it interacts with. If most details don’t matter, most experiments are relatively uninformative. If a
few details are crucial, then this is where both modeling and experiments must focus, but neither
a purely top-down nor bottom-up approach can reliably find them.

Thus failure to explicitly exploit the highly structured, organized, and “robust yet fragile” na-
ture of such systems hopelessly dooms any method to be overwhelmed by their sheer complexity.
Technically speaking, we can now formulate a wide range of questions for very general dynami-
cal systems under a common Lyapunov-type umbrella, converting them into statements involving
semi-algebraic sets, polynomial (nonlinear) equations and inequalities. Proving such statements is
still coNP-hard, but real algebraic geometry, semi-definite programming, and duality theory from
optimization provide new methods to systematically exhaust coNP by searching for nested families
of short proofs using convex relaxations. Not only can we search for short proofs systematically,
but a lack of short proofs implies, by a generalization of duality, intrinsic fragilities in the question
itself. This feedback from computation to modeling does not imply P=NP=coNP, which is unlikely,
but rather that inference problems within coNP lacking short proofs can be traced to specific and
meaningful flaws in models or data for which resolution can then be systematically pursued. Note
that this is a radical broadening of the numerical analysts notion of ill-conditioning, and involves
mathematics from a variety of previously unrelated disciplines. Again, in retrospect, this should
not be surprising, but it creates enormous challenges in both education and the review process.

Though this is all very new, these methods have already found substantial applications in
networking, biology, physics, dynamical systems, controls, algorithms, and finance [10–13,28,34,41,
78,81,89–91,98,124–128], and work on connections with communications theory is in progress and
discussed in the technical details. A side benefit of a deepening understanding of the fundamental
nature of complexity in a general sense is also a new and more rigorous explanations for long-
standing problems in physics associated with complex systems [5, 10–13,21,28,28,66,97,117].

1.1.3 Robust and Scalable Validation of Models Against Data

Simulation will always be a workhorse of systems biology, but it can be enhanced substantially if
conjectures formulated using simulation can be proved rigorously. The linchpin of our proposed
modeling system is the development and implementation of theoretically-sound methods for model
validation. Although some existing software tools provide mechanisms for comparing a model’s
behavior to experimental data (e.g., Gepasi [68, 69]), the methods used to date have been ad-hoc,
brute-force approaches that do not scale to larger models. The theoretical framework described later
in this document represents an unprecedented opportunity to create a system for model analysis

6

and validation and iterative experimentation for large-scale, stochastic, nonlinear, nonequilibrium,
mixed continuous and discrete models with multiple time and spatial scales. The remarkable quality
of the theory is that it can be used to prove conjectures for this difficult class of models such as “this
model cannot fit the data, no matter what parameters we use” and “this model is robust no matter
how parameters are varied.” This is something that previously has not been possible except for
much simpler models. Yet this, together with sophisticated robustness analysis methods, is exactly
the capability needed in order to allow realistic biological models to be analyzed and related back
to the experimental data to help answer the question, “What is the next experiment that would
best differentiate between the current alternative hypotheses?”

We are relying on SOSTOOLS as a foundation for the system identification and parameter
estimation research, however this reliance is less than it might appear. Our SOS/SDP framework
actually recovers as special cases essentially all of the standard methods, so the worst-case scenario
is that it merely provide an integrated and unified method to access what might otherwise appear
to be quite disparate methods. This is not an aspect of our methods that we emphasize but it is
an important element in our optimism about their potential. Perhaps more important is the con-
verse, that we are suspicious of new methods that cannot capture gold-standard methods already
in existence. Another important issue is that the SOS/SDP methods are the only candidates for a
successor to linear programs in providing all the features of automation, scalability, duality, struc-
ture, and fragility to hard problem classes involving stochastic, hybrid, and nonlinear dynamical
systems, in addition to reducing to linear programs in the special cases when it applies. These
two features, plus the implementation in a MATLAB toolbox, makes SOSTOOLS unique. It also
has the benefit that a large, diverse, and sophisticated research community spanning control and
dynamical systems, hybrid systems, optimization, and many areas of pure and applied mathematics
has recently begun to focus substantial attention in this area.

1.2 SBML

In order to perform computational analysis on models of biological systems, it is first necessary
to represent those models in a computable format. This format should be common to all the
software tools (editors, simulators, analysis algorithms, and databases) used to perform computa-
tional modeling and analysis. The Systems Biology Markup Language (SBML) project is aimed
at addressing exactly this need for biochemical network modeling by creating a lingua franca for
computational models—a common format for communicating the most essential aspects of models
between software tools. Our team developed SBML into a de facto standard format for representing
formal qualitative and quantitative models of systems of biochemical reactions. It has become an
unparalleled success in this area, supported by over 110 software tools worldwide to date.

SBML is a machine-readable model definition language based upon XML, the eXtensible Markup
Language [15,18], which in turn is a simple and portable text-based substrate that has been gaining
widespread acceptance in computational biology and bioinformatics. Software tools read and write
models in SBML by using either a general-purpose XML parsing library (two popular ones are
Xerces and Expat), or a specialized library that provides a higher-level interface to working with
SBML. Software developers who start with general-purpose XML libraries find themselves having
to write constructs that abstract above the level of raw XML and provide more specialized (i.e.,
SBML-specific) functionality anyway; thus, for most developers, the second approach of starting
with a specialized SBML library is much more efficient and desirable. To this end, our team has
developed libSBML, an embedded library for working with SBML (libSBML).

The libSBML library provides an interface for working with SBML in a number of programming
languages: C, C++, Java, Perl, MATLAB and Python. It is free, open-source, and portable

7

to Linux, Windows, MacOS and Solaris. It also provides many important capabilities, such as
consistency-checking of SBML models, translation of mathematical expressions, and others. The
libSBML library is one of the most popular programming tools for working with SBML, and has
proven to be so robust that The MathWorks (makers of MATLAB) use it as part of their commercial
SimBiology package for MATLAB.

This project’s goals were in two areas: (A) continued development on libSBML, both to complete
its support of SBML and to add important additional functionality; and (B) support of SBML use
and evolution in the context of specific BioSPICE project needs.

1.2.1 Motivations for Developing SBML

Until recently, the majority of models were implemented in custom programs and published as
statements of the underlying mathematics (e.g., sets of equations). However, to be useful as formal
embodiments of our understanding of biological systems [16], computational models must be put
into a consistent form that can be communicated more directly between the software tools used to
work with them. This format must help overcome a number of problems facing a systems biologist:

• Users often need to work with complementary resources from multiple software tools in the
course of a project because different tools have different strengths and capabilities. For
example, one tool may have a good model editing interface, another tool may provide novel
facilities for analyzing system properties, yet another may implement an advanced simulation
capability but lack a good graphical interface, etc. If the tools do not share a common
model storage format, users are forced to re-encode their models in each tool separately, a
time-consuming and error-prone practice.

• Models published in peer-reviewed journals are sometimes accompanied by instructions for
obtaining the definitions in electronic form. However, because each author may use a different
software environment (and associated model representation language), such definitions are
often not straightforward to examine, test and reuse. Researchers who wish to use a published
model typically must transcribe it manually into a format compatible with their particular
software.

• When simulation software packages are no longer supported, models developed in those sys-
tems can become stranded and unusable. This has already happened on a number of occa-
sions, with a resulting loss of usable models to the research community. Continued innovation
and development of new tools will only aggravate this problem unless the issue of standard
formats is addressed.

• Reuse of existing models requires that those models can be clearly identified, easily retrieved,
and related to their published descriptions in the scientific literature. Moreover, because of
the increasing size and complexity of models continually being developed, the model structure
should be documented to allow for efficient handling and sound modification.

We developed the Systems Biology Markup language (SBML) in an effort to address these
problems. SBML is a format for representing computational models in a way that can be used by
different software systems to communicate and exchange those models [38, 50, 51]. By supporting
SBML as an input and output format, different software tools can all operate on an identical
representation of a model, removing opportunities for errors in translation and assuring a common
starting point for analyses and simulations.

8

1.2.2 The Form and Features of SBML

SBML can encode models consisting of biochemical entities (species) linked by reactions to form
networks. An important principle is that models are decomposed into explicitly-labeled constituent
elements, the set of which resembles a verbose rendition of chemical reaction equations. The rep-
resentation deliberately does not cast the model directly into a set of differential equations or
other specific interpretation of the model. This explicit, modeling-framework-agnostic decomposi-
tion makes it easier for a software tool to interpret the model and translate the SBML form into
whatever internal form the tool actually uses. The formalisms in SBML allows a wide range of
biological phenomena to be modeled, including metabolism, cell signaling, gene regulation, and
more. Significant flexibility and power comes from the ability to define arbitrary formulae for the
rates of change of variables as well as the ability to express other constraints mathematically.

Balancing simplicity and feature-richness has been challenging because of the variety of software
tools and techniques being explored in the field, and because it is difficult to predict how all
language design choices will ultimately impact software and users. SBML development has therefore
proceeded in a staged approach where each SBML Level is an attempt to achieve a consistent
language that supports the needs of a significant number of software tools at a certain level of
complexity. Versions within levels refine and adjust language features. This staged development
provides software authors with stable standards so the community can gain experience with the
language definitions before new features are introduced. The evolution towards feature stability
within a given Level is an iterative process requiring much discussion with the user community.
Eventually, the community decides that it is time to stop refining a given SBML Level, take a
leap in complexity and move to developing the next higher level. Two levels have been finalized
so far: Level 1 and Level 2 [37, 51]. The former is simpler (but less powerful) than Level 2. The
separate levels are intended to coexist; SBML Level 2 does not render Level 1 obsolete. Software
tools that do not need or cannot support higher levels can go on using lower levels; tools that can
read higher levels are assured of also being able to interpret models defined in the lower levels. The
libSBML open-source software infrastructure we have been developing allows developers to support
both Levels in their software almost transparently.

SBML Level 2 Version 2 is the latest definition of SBML; it is an incremental evolution of the
language resulting from the practical experiences of users and developers working with Level 1
and Level 2 Version 1. A model definition in Level 2 Version 2 consists of lists of one or more
of the following components: species type, a type of entity that can be involved in reactions (e.g.,
molecules, ions, proteins); compartment type, a type of location where reacting entities such as
chemical substances may be located; compartment, a container for well-stirred substances where
reactions take place; species, a pool of a chemical substance located in a specific compartment (a
species represents the concentration or amount of a substance and not a single molecule); reaction,
a statement describing some transformation, transport or binding process that can change one or
more species (each reaction is characterized by the stoichiometry of its products and reactants and
optionally by a rate equation); parameter, a quantity that has a symbolic name; unit definition, a
name for a unit used in the expression of quantities in a model; initial assignment, a mathematical
expression used to determine the initial value of a variable; constraint, a mathematical expression
that defines a constraint on the values of model variables throughout simulation time; rule, a
mathematical expression that is added to the model equations constructed from the set of reactions
(rules can be used to set parameter values, establish constraints between quantities, etc.); function:
a named mathematical function that can be used in place of repeated expressions in rate equations
and other formulas; and event : a set of mathematical formulae evaluated at a specified moment
in the time evolution of the system. Additional features in SBML Level 2 include support for

9

including metadata using RDF annotations [61], and support for delay functions.

1.2.3 Relationships to Other Representation Languages

Many XML-based formats exist for representing data and models in different domains of biology, for
example MAGE-ML [110] and PSI-MI [49], and others. However, we know of only two formats that
are suitable for representing compartmental reaction network models with sufficient mathematical
depth that the descriptions can be used as direct input to simulation software. The two are SBML
and CellML [47,48].

CellML is based on composing systems of equations by linking together the variables in those
equations; it also has features for declaring biochemical reactions explicitly, as well as encapsulating
arbitrary components into modules. Its focus is a component-based architecture to facilitate reuse
of models and parts of models, and the mathematical description of models. By contrast, SBML
provides constructs that are more similar to the internal data objects used in many contemporary
software packages specialized for biochemical networks. These differences aside, the SBML and
CellML efforts share much in common and represent somewhat different approaches to solving
similar problems. They were initially developed independently, but the developers of both languages
continue to exchange ideas and seek ways of making the languages more interoperable. SBML
Level 2 borrows ideas from CellML.

A recent related effort is BioPAX. The BioPAX (Biological Pathway Exchange; [9,114]) project
is an effort to create a data exchange format for biological pathway data. Much like SBML, it aims
to be a lingua franca for pathway databases, an area currently lacking a standard format despite the
existence of well over 100 Internet-accessible databases storing pathway data. BioPAX deliberately
borrows ideas from SBML development [4], such as the concept of stratifying development into
levels, and is in many ways complementary to SBML.

1.2.4 LibSBML: Software Infrastructure for SBML

LibSBML is an application programming interface (API) library for reading, writing and manipu-
lating files and data streams containing SBML content. Developers can embed the library in their
applications, saving themselves the work of implementing their own parsing, manipulation and
validation software. At the API level, the library provides the same interface to data structures
independently of whether the model originated in SBML Level 1 or 2. The library currently also
offers the ability to translate SBML Level 1 models to SBML Level 2.

LibSBML is written in ISO standard C and C++ and is highly portable. It is currently sup-
ported on the Linux, Solaris, MacOS X, and Microsoft Windows operating systems. The library
provides language bindings for C, C++, Java, Python, Perl, MATLAB and Common Lisp, with
support for other languages planned for the future. We distribute the package in both source-code
form and as precompiled dynamic libraries for the Microsoft Windows, Linux and Apple MacOS X
operating systems; they are available under terms of the LGPL [39] from the sbml project on
SourceForge.net [109], the world’s largest open-source software repository and project hosting ser-
vice. LibSBML is at release version 2.3.2 as of June 2005.

1.2.5 Advantages of a Dedicated Library for SBML

Why not simply use a generic XML parsing library? After all, SBML is usually expressed in XML,
and there exist plenty of XML parsers, so why not simply tell people to use one of them, rather
than develop a specialized library? The answer is: while it is true that developers can use general-

10

purpose XML libraries, there are many reasons why using a system such as libSBML is a vastly
better choice.

One of the features of libSBML is its facilities for manipulating mathematical formulas support-
ing differences in representation between SBML Level 1 and SBML Level 2. As discussed in more
detail below, libSBML provides an API that allows working with formulas in both text-string and
MathML [3] form, and to interconvert mathematical expressions between these forms. The utility
of this facility extends beyond converting between SBML Level 1 and 2. Many software packages
provide users with the ability to express formulas for such things as reaction rate expressions, and
these packages’ interfaces often let users type in the formulas directly as text strings. LibSBML
saves application programmers the work of developing formula manipulation and translation func-
tionality. It makes it possible to translate those formula strings directly into Abstract Syntax Trees
(ASTs), manipulate them using AST operations, and write them out in the MathML format of
SBML Level 2.

As discussed below, another feature of libSBML is the validation it performs on SBML inputs
at the time of parsing files and data streams. This helps verify the correctness of models in a way
that goes beyond simple syntactic validation. Still another invaluable feature of libSBML is the
domain-specific operations it provides beyond simple SBML-specific accessor facilities. Examples of
such operations include obtaining a count of the number of boundary condition species, determining
the modifier species of a reaction (assuming the reaction provides kinetics), and constructing the
stoichiometric matrix for all reactions in a model.

Finally, libSBML is solidly written and tested. The entire library has been written by seasoned,
professional, software engineers using the test-driven approach [6]. The libSBML source code
currently has 760 unit tests and over 3400 individual assertions. It represents a robust and well-
tested system that others can build upon.

2 Approach/Problems to be Addressed

The following provide more details about the areas of work that were the goals for this funding.

2.1 Sum of Squares (SOS) Framework and SOSTOOLS

Consider a given system of polynomial equations and inequalities, for instance:

f1(x1, x2) := x2
1 + x2

2 − 1 = 0,

g1(x1, x2) := 3x2 − x3
1 − 2 ≥ 0,

g2(x1, x2) := x1 − 8x3
2 ≥ 0.

(1)

How can one find real solutions (x1, x2)? How to prove that they do not exist? And if the solution
set is nonempty, how to optimize a polynomial function over this set?

Until a few years ago, the default answer to these and similar questions would have been that the
possible nonconvexity of the feasible set and/or objective function precludes any kind of analytic
global results. Even today, the methods of choice for most practitioners would probably employ
mostly local techniques (Newton’s and its variations), possibly complemented by a systematic search
using deterministic or stochastic exploration of the solution space, interval analysis or branch and
bound. However, very recently there have been renewed hopes for the efficient solution of specific
instances of this kind of problems. The main reason is the appearance of methods that combine in a
very interesting fashion ideas from real algebraic geometry and convex optimization [60,71,78]. As

11

we will see, these methods are based on the intimate links between sum of squares decompositions
for multivariate polynomials and semidefinite programming (SDP).

We will outline the essential elements of this new research approach as introduced in [78, 79].
The centerpieces will be the following two facts about multivariate polynomials and systems of
polynomials inequalities:

1. Sum of squares decompositions can be computed using semidefinite programming.

2. The search for infeasibility certificates is a convex problem. For bounded degree, it is an SDP.

We will define the basic ideas needed to make the assertions above precise, and explain the relation-
ship with earlier techniques. For this, we will introduce sum of squares polynomials and the notion
of sum of squares programs. We then explain how to use them to provide infeasibility certificates
for systems of polynomial inequalities, finally putting it all together via the surprising connections
with optimization.

2.1.1 Sums of Squares and SOS Programs

Our notation is mostly standard. The monomial xα associated to the n-tuple α = (α1, . . . , αn)
has the form xα1

1 . . . xαn
n , where αi ∈ N0. The degree of a monomial xα is the nonnegative in-

teger
∑n

i=1 αi. A polynomial is a finite linear combination of monomials
∑

α∈S cαx
α, where the

coefficients cα are real. If all the monomials have the same degree d, we will call the polynomial
homogeneous of degree d. We denote the ring of multivariate polynomials with real coefficients in
the indeterminates {x1, . . . , xn} as R[x].

A multivariate polynomial is a sum of squares (SOS) if it can be written as a sum of squares of
other polynomials, i.e.,

p(x) =
∑

i

q2i (x), qi(x) ∈ R[x].

If p(x) is SOS then clearly p(x) ≥ 0 for all x. In general, SOS decompositions are not unique. For
example, the polynomial p(x1, x2) = x2

1 − x1x
2
2 + x4

2 + 1 is SOS. Among infinite others, it has the
decompositions: p(x1, x2) = 3

4(x1−x2
2)

2+ 1
4(x1+x2

2)
2+1 = 1

9(3−x2
2)

2+ 2
3x

2
2+

1
288(9x1−16x2

2)
2+ 23

32x
2
1.

The sum of squares condition is a quite natural sufficient test for polynomial nonnegativity. Its
rich mathematical structure has been analyzed in detail in the past, notably by Reznick and his
coauthors [23, 101], but until very recently the computational implications have not been fully
explored. In the last few years there have been some very interesting new developments surrounding
sums of squares, where several independent approaches have produced a wide array of results linking
foundational questions in algebra with computational possibilities arising from convex optimization.
Most of them employ semidefinite programming (SDP) as the essential computational tool. For
completeness, we present in the next paragraph a brief summary of SDP.

Semidefinite programming SDP is a broad generalization of linear programming (LP), to the
case of symmetric matrices. Denoting by Sn the space of n× n symmetric matrices, the standard
SDP primal-dual formulation is:

minX C •X s.t.
{
Ai •X = bi, i = 1, . . . ,m
X � 0

maxy b
T y, s.t.

∑m
i=1Aiyi � C

(2)

12

where Ai, C,X ∈ Sn and b, y ∈ Rm. The matrix inequalities are to be interpreted in the par-
tial order induced by the positive semidefinite cone, i.e., X � Y means that X − Y is a positive
semidefinite matrix. Since its appearance almost a decade ago (related ideas, such as eigenvalue
optimization, have been around for decades) there has been a true “revolution” in computational
methods, supported by an astonishing variety of applications. By now there are several excellent in-
troductions to SDP; among them we mention the well-known work of Vandenberghe and Boyd [120]
as a wonderful survey of the basic theory and initial applications, and the handbook [122] for a
comprehensive treatment of the many aspects of the subject.

From SDP to SOS The main object of interest in semidefinite programming is quadratic forms,
that are positive semidefinite. When attempting to generalize this construction to homogeneous
polynomials of higher degree, an unsurmountable difficulty that appears is the fact that deciding
nonnegativity for quartic or higher degree forms is an NP-hard problem. Therefore, a computational
tractable replacement for this is the following: even degree polynomials, that are sums of squares.

Sum of squares programs can then be defined as optimization problems over affine families of
polynomials, subject to SOS contraints. Like SDPs, there are several possible equivalent descrip-
tions. We choose below a free variables formulation, to highlight the analogy with the standard
SDP dual form discussed above. A sum of squares program has the form

maxy b1y1 + · · ·+ bmym

s.t. Pi(x, y) are SOS, i = 1, . . . , p

where Pi(x, y) := Ci(x) +Ai1(x)y1 + · · ·+Aim(x)ym, and the Ci, Aij are given polynomials in the
variables xi.

SOS programs are very useful, since they directly operate with polynomials as their basic
objects, thus providing a quite natural modelling formulation for many problems. Among others,
examples for this are the search for Lyapunov functions for nonlinear systems [76, 78], probability
inequalities [7], as well as the relaxations in [60,78] discussed below.

Interestingly enough, despite their apparently greater generality, sum of squares programs are
in fact equivalent to SDPs. On the one hand, by choosing the polynomials Ci(x), Aij(x) to be
quadratic forms, we recover standard SDP. On the other hand, as we will see in the next section, it
is possible to exactly embed every SOS program into a larger SDP. Nevertheless, the rich algebraic
structure of SOS programs will allow us a much deeper understanding of their special properties,
as well as enable customized, more efficient algorithms for their solution [63]. Furthermore, as
illustrated in later sections, there are numerous questions related to some foundational issues in
nonconvex optimization that have simple and natural formulations as SOS programs.

SOS programs as SDPs Sum of squares programs can be written as SDPs. The reason is the
following theorem: A polynomial p(x) is SOS if and only if p(x) = zTQz, where z is a vector of
monomials in the xi variables, Q ∈ SN and Q � 0. In other words, every SOS polynomial can be
written as a quadratic form in a set of monomials of cardinality N , with the corresponding matrix
being positive semidefinite. The vector of monomials z (and therefore N) in general depends on
the degree and sparsity pattern of p(x). If p(x) has n variables and total degree 2d, then z can
always be chosen as a subset of the set of monomials of degree less than or equal to d, of cardinality

13

N =
(
n+d

d

)
. Consider again the polynomial p(x1, x2) = x2

1−x1x
2
2 +x4

2 +1. It has the representation

p(x1, x2) =
1
6

1
x2

x2
2

x1

T

6 0 −2 0
0 4 0 0

−2 0 6 −3
0 0 −3 6

1
x2

x2
2

x1

 ,
and the matrix in the expression above is positive semidefinite.

In the representation f(x) = zTQz, for the right- and left-hand sides to be identical, all the
coefficients of the corresponding polynomials should be equal. SinceQ is simultaneously constrained
by linear equations and a positive semidefiniteness condition, the problem can be easily seen to be
directly equivalent to an SDP feasibility problem in the standard primal form (2). Given a SOS
program, we can use the theorem above to construct an equivalent SDP. The conversion step is fully
algorithmic, and has been implemented, for instance, in the SOSTOOLS software package, described
in the next section. Therefore, we can in principle directly apply all the available numerical methods
for SDP to solve SOS programs.

2.1.2 Algebra and Optimization

A central theme throughout convex optimization is the idea of infeasibility certificates (for instance,
in LP via Farkas’ lemma), or equivalently, theorems of the alternative. As we will see, the key link
relating algebra and optimization in this approach is the fact that infeasibility can always be
certified by a particular algebraic identity, whose solution is found via convex optimization.

Ideals and cones For later reference, we define here two important algebraic objects: the
ideal and the cone associated with a set of polynomials: Given a set of multivariate polynomi-
als {f1, . . . , fm}, let

ideal(f1, . . . , fm) := {f | f =
m∑

i=1

tifi, ti ∈ R[x]}.

Also, given a set of multivariate polynomials {g1, . . . , gm}, let

cone(g1, . . . , gm) := {g | g = s0 +
∑
{i}

sigi +
∑
{i,j}

sijgigj +
∑
{i,j,k}

sijkgigjgk + · · · },

where each term in the sum is a squarefree product of the polynomials gi, with a coefficient sα ∈ R[x]
that is a sums of squares. The sum is finite, with a total of 2m − 1 terms, corresponding to the
nonempty subsets of {g1, . . . , gm}.

These algebraic objects will be used for deriving valid inequalities, which are logical consequences
of the given constraints. Notice that by construction, every polynomial in ideal(fi) vanishes in
the solution set of fi(x) = 0. Similarly, every element of cone(gi) is clearly nonnegative on the
feasible set of gi(x) ≥ 0. The notions of ideal and cone as used above are standard in real algebraic
geometry; see for instance [14]. In particular, the cones are also referred to as a preorders. Notice
that as geometric objects, ideals are affine sets, and cones are closed under convex combinations and
nonnegative scalings (i.e., they are actually cones in the convex geometry sense). These convexity
properties, coupled with the relationships between SDP and SOS, will be key for our developments
in the next section.

14

Infeasibility certificates If a system of equations does not have solutions, how do we prove this
fact? A very useful concept is that of certificates, which are formal algebraic identities that provide
irrefutable evidence of the nonexistence of solutions.

We briefly illustrate some well-known examples below. The first two deal with linear systems
and polynomial equations over the complex numbers, respectively.

• Range/kernel: Ax = b is infeasible ⇔ ∃µ s.t. ATµ = 0, bTµ = −1.

• Hilbert’s Nullstellensatz: Let fi(z), . . . , fm(z) be polynomials in complex variables z1, . . . , zn.
Then,

fi(z) = 0 (i = 1, . . . ,m) is infeasible in Cn ⇔ −1 ∈ ideal(f1, . . . , fm).

Each of these theorems has an “easy” direction. For instance, for the first case, given the multipliers
µ the infeasibility is obvious, since

Ax = b ⇒ µTAx = µT b ⇒ 0 = −1,

which is clearly a contradiction. The two theorems above deal only with the case of equations. The
inclusion of inequalities in the problem formulation poses additional algebraic challenges, because
we need to work on an ordered field. In other words, we need to take into account special properties
of the reals, and not just the complex numbers.

For the case of linear inequalities, LP duality provides the following characterization (Farkas
lemma): {

Ax+ b = 0
Cx+ d ≥ 0

is infeasible ⇔ ∃λ ≥ 0, µ s.t.
{
ATµ+ CTλ = 0
bTµ+ dTλ = −1.

Although not widely known in the optimization community until recently, it turns out that sim-
ilar certificates do exist for arbitrary systems of polynomial equations and inequalities over the
reals. The result essentially appears in this form in [14], and is due to Stengle [112], and is called
Positivstellensatz. {

fi(x) = 0, (i = 1, . . . ,m)
gi(x) ≥ 0, (i = 1, . . . , p)

is infeasible in Rn

m

∃F (x), G(x) ∈ R[x] s.t.

F (x) +G(x) = −1
F (x) ∈ ideal(f1, . . . , fm)
G(x) ∈ cone(g1, . . . , gp).

The theorem states that for every infeasible system of polynomial equations and inequalities,
there exists a simple algebraic identity that directly certifies the nonexistence of real solutions.
By construction, the evaluation of the polynomial F (x) + G(x) at any feasible point should pro-
duce a nonnegative number. However, since this expression is identically equal to the polynomial
−1, we arrive at a contradiction. Remarkably, the Positivstellensatz holds under no assumptions
whatsoever on the polynomials.

In the worst case, the degree of the infeasibility certificates F (x), G(x) could be high (of course,
this is to be expected, due to the NP-hardness of the original question). In fact, there are a few
explicit counterexamples where large degree refutations are necessary [44]. Nevertheless, for many
problems of practical interest, it is often the case that it is possible to prove infeasibility using

15

Degree \ Field Complex Real
Linear Range/Kernel Farkas Lemma

Linear Algebra Linear Programming
Polynomial Nullstellensatz Positivstellensatz

Bounded degree: Linear Algebra Bounded degree: SDP
Groebner bases

Table 1: Infeasibility certificates and associated computational techniques.

relatively low-degree certificates. There is significant numerical evidence that this is the case, as
indicated by the large number of practical applications where SDP relaxations based on these
techniques have provided solutions of very high quality.

Of course, we are concerned with the effective computation of these certificates. For the Posi-
tivstellensatz, notice that the cones and ideals as defined above are always convex sets in the space
of polynomials. A key consequence is that the conditions in Posivstellensatz for a certificate to exist
are therefore convex, regardless of any convexity property of the original problem. Even more, the
same property holds if we consider only bounded-degree sections, i.e., the intersection with the set
of polynomials of degree less than or equal to a given number D. In this case, the conditions in the
P-satz have exactly the form of a SOS program! Of course, as discussed earlier, this implies that
we can find bounded-degree certificates, by solving semidefinite programs. In Table 1 we present a
summary of the infeasibility certificates discussed, and the associated computational techniques.

As outlined in the preceding paragraphs, there is a direct connection going from general poly-
nomial optimization problems to SDP, via P-satz infeasibility certificates. Pictorially, we have the
following:

Polynomial systems ⇒ P-satz certificates ⇒ SOS programs ⇒ SDP

Even though we have discussed only feasibility problems, there are obvious straightforward connec-
tions with optimization. By considering the emptiness of the sublevel sets of the objective function,
sequences of converging bounds indexed by certificate degree can be directly constructed.

2.1.3 SOSTOOLS

SOSTOOLS [90, 91] is a free, third-party MATLAB toolbox for solving sum of squares pro-
grams. The functions implemented in SOSTOOLS are based on the sum of squares decom-
position of multivariate polynomials [23], which can be efficiently computed using semidefinite
programming [120]. SOSTOOLS was the result of the recent interest in sum of squares poly-
nomials [23, 60, 71, 78, 79, 102, 107], partly due to the fact that these techniques provide convex
relaxations for many computationally hard problems such as global, constrained, and boolean op-
timization [53,60,71,103,107,116].

In addition to the optimization problems mentioned above, sum of squares polynomials (and
hence SOSTOOLS) find applications in several systems analysis and control theory problems, such
as nonlinear stability analysis [76,78,89,104], robustness analysis [34,76,78,89], nonlinear synthesis
[52, 93], and model validation [34, 83]. Some other areas in which SOSTOOLS is applicable are
geometric theorem proving [80] and quantum physics [28].

Currently, sum of squares programs are handled by reformulating them as semidefinite programs
(SDPs), which in turn are solved efficiently, e.g. using interior point methods. Several commercial
and non-commercial software packages are available for solving SDPs. While the conversion from
SOS programs to SDPs can be performed manually for small size instances or tailored for specific
problem classes, such a conversion can be quite cumbersome to perform in general. It is therefore

16

desirable to have a tool that automatically performs this conversion for general SOS programs.
This is exactly where SOSTOOLS comes to play. It automates the conversion from SOS program
to SDP, calls the SDP solver, and converts the SDP solution back to the solution of the original
SOS program. At present, it uses another free MATLAB add-on called SeDuMi [115] as the SDP
solver.

All polynomials in SOSTOOLS are implemented as symbolic objects, making full use of the
MATLAB Symbolic Math Toolbox’s capabilities. This gives to the user the benefit of being able
to do all polynomial manipulations using the usual arithmetic operators: +, -, *, /, ^; as well
as differentiation, integration, point evaluation, etc. In addition, this provides the possibility of
interfacing with the Maple symbolic engine and library, which is advantageous.

The user interface has been designed to be as simple, easy to use, and transparent as possible. A
user creates an SOS program by declaring SOS program variables, adding SOS program constraints,
setting the objective function, and so on. After the program is created, the user calls one function
to run the solver. Finally, the user retrieves solutions to the SOS program using another function.

SOSTOOLS is available for free under the GNU General Public License. The software and its
user’s manual can be downloaded from the SOSTOOLS website [91]. It requires MATLAB version
6.0 or later, SeDuMi version 1.05, and the Symbolic Math Toolbox version 2.1.2. SOSTOOLS
can be easily run on a UNIX workstation or on a Windows PC. It utilizes the MATLAB sparse
matrix representation for good performance and to reduce the amount of memory needed. To give
an illustrative figure of the computational load, all the demo files that are distributed along with
SOSTOOLS can be solved in less than 8 seconds by SOSTOOLS running on a PC laptop with a
933 Mhz Intel Pentium-III processor and 384 MBytes of RAM.

2.2 SBML

2.2.1 Continued Development of libSBML

Expand the Model Consistency Checking Rules and Facilities The SBML specification is
defined by an XML Schema that describes the basic syntax and structure of SBML. Unfortunately,
the types of data criteria that may be expressed with XML Schemas are somewhat limited and
the SBML community has quickly outgrown them. We believe the most elegant, expressive, and
scalable form for expressing and validating sophisticated relationships between SBML objects is
a programming language that can inspect the libSBML object model. As a proof-of-concept, our
team has implemented over 30 model consistency checks in libSBML. These checks fall into several
broad categories, including referential integrity (e.g., is reaction’s product defined?), units (e.g., are
a compartment’s spatial dimensions consistent with its declared units?), and mathematics (e.g., are
all symbols in an equation accounted for as either species concentrations or parameters?). We have
identified approximately 50 more consistency checks that are important to implement in libSBML;
a list is available on the SBML project web site’s wiki area (http://sbml.org/wiki). In addition
to implementing the remaining 50 consistency checks, we also planned to add the capability for
programmers to extend libSBML’s built-in rules with new rules of their own.

Integrate a Units Checking and Translation System An important but undervalued feature
of SBML is its support for specifying units on quantities. From the user’s standpoint, supplying
units allows the user to use those units that are most natural to them and their task; from the
software’s standpoint, units provide the opportunity to perform an important level of consistency
checking on a model. The libSBML library currently performs some basic unit checks on a model
(e.g., to verify that units used in a model have corresponding definitions), but another aim of this

17

project was to provide a more powerful facility that can (1) interpret the units used in a model and
verify that they are semantically correct and consistent, and (2) support translations of quantities
with different units. The first goal is needed to ensure that, for example, complicated rate laws
such as

Vm1 · RNAP · RNAnuc

Km1 + RNAnuc
(3)

end up with proper units after all parameters and mathematical equations are substituted and
expanded. The second goal concerns developing an API that allows calling programs to supply
a quantity using one set of units and request that libSBML translates it into a quantity having
another set of units.

Provide an API for SBML Annotations Annotations are a regimented means for allowing
software tools to insert additional information into an SBML model. They are defined to be in XML
format, and allowed to appear on any model element. Software tools are expected to preserve, as
much as possible, annotations included in a model by other tools. Currently, annotations are treated
as text strings by libSBML. Software developers have requested API functionality allowing the
manipulation of annotations at a finer-grained level and more structured fashion. This is currently
not provided by libSBML because we believe the most workable approach is to provide DOM-
like XML handling support for annotations, and not all XML parsers provide a DOM interface.
(The Expat parser library does not, and it happens to be one of the most popular XML parsers.)
Thus, a goal was to implement a limited set of DOM-like interfaces directly in libSBML to support
structured manipulation of annotations in SBML.

Provide Additional “Convenience” APIs The libSBML library provides a variety of func-
tions that go beyond simply accessing and setting values of model components. For example, there
are functions for translating mathematics from text strings into MathML, for getting a list of all
chemical substances that have been declared as being boundary conditions on a model, and more.
As developers continue using libSBML, we receive requests for more functionality. One such request
has been for functionality for searching models to find elements having chosen criteria, for example
to find all reactions in a model which involve a specific chemical species.

Implement Support for RDF and Metadata in SBML RDF (Resource Description For-
mat) is a standardized means of representing information about resources on the Internet, and is
specifically suited to representing metadata in XML data streams. In SBML, RDF is the mech-
anism for representing metadata (such as references to GO ontology terms). One of the goals of
this project was to implement an API in libSBML for working with RDF-based metadata in SBML
models.

Support “Within-SBML” Translations Some model constructs can be expressed in more
than one way in SBML. For example, a model can contain mathematical statements assigning values
to named parameters, or the model can be written such that the numerical values themselves appear
everywhere in the model where they are used. Some software tools cannot handle models containing
assignment statements or other kinds of Rules, but can handle models that contain the values or
other kinds of constructs substituted in. For these tools, the second style of model representation
is preferable; the first style of model is inaccessible to them on the face of it, yet could in principle
also be accessible to the tool if it had a means for interpreting the model and translating it into a
more appropriate form. Therefore, another of our goals was to implement this kind of facility in

18

libSBML. It was meant to provide mechanisms for doing such things as substituting assignments
into a model, “expanding” function definitions and substituting them where they are used in a
model (analogous to macro substitution in programming languages), and others.

Support Translating SBML Level 2 down to SBML Level 1 The different SBML levels are
intended to coexist, so that software tools with different levels of sophistication can nevertheless
exchange some types of models. Level 2 subsumes all the functionality of SBML Level 1, and
adds more, so that in principle, a software application supporting SBML Level 2 can also support
Level 1. But, not surprisingly, the converse is not always true; a Level 2 model cannot always be
expressed in Level 1. It is possible to do this for some subset of Level 2 models, because not all
models make use of all the advanced features available in Level 2. This means that a significant
subset of Level 2 models could be made available to tools which can only read Level 1. The best
substrate for implementing a translator is libSBML, since it is the most advanced software tool for
reading, writing and manipulating SBML.

Support SBML Level 2 Version 2, Expected to Be Introduced in 2005 The SBML
community is currently evaluating features to be introduced in a Version 2 specification of SBML
Level 2 (which is currently at Version 1). This new version of SBML would correct some misfeatures
and add support for certain kinds of constructs that the community has decided are much-needed
additions. Our team made a preliminary proposal at the SBML Forum meeting in Heidelberg in
October 2004; this proposal was met positively and we expect that a final definition of Version 2
will be made in 2005. It will be essential that libSBML supports this new version, and a goal of
this project was to make the necessary modifications to libSBML.

2.2.2 Support of SBML Use and Evolution

Coordination of Annotations Annotations in SBML are a way for software developers to add
information to models in cases where the SBML specification does not provide a structured format
for that information. This is being used by many groups to experiment with new additions to
SBML. The idea of annotations has been a success, and has lead to requests for a way to organize
annotations more formally. As part of this work, we aimed to implement a clearinghouse for SBML
annotations and help organize different groups’ proposed annotations. The clearinghouse was to
be online on the SBML website (http://sbml.org) and include: (a) description of a proposed
set of annotations; (b) information about the authors of the annotations; (c) the definition of
the annotations; (d) use-case examples of how the annotations are meant to be employed; (e)
information about software tools using the annotations.

BioPAX and SBML BioPAX is an open file format being proposed for the exchange of biological
pathway data. SBML and BioPAX in many ways complement each other: SBML provides more
information about the reactions and mathematics behind them, whereas BioPAX provides more
information about the entities participating in the reactions. It is natural to seek to link the two
formats together. As part of this project, we proposed to work on developing a proposal for linking
the SBML and BioPAX representations in a way that would allow software tools to exchange single
models containing both SBML and BioPAX content.

19

3 Accomplishments of the Project

In this section, we describe the results of this project for each of the goals listed in the previous
section.

3.1 Towards the Multiscale Simulation of Biochemical Networks

In this section, based on [33], we report on new contributions to the development of a scalable
scientific theory and software infrastructure for complex biological networks. We specifically provide
a promising approach to model validation, robustness and stochastic reachability analysis, all in the
context of two biologically motivated and functionally important systems: the heat shock response
in E. coli and the lysis/lysogeny decision system in the bacteriophage λ. Both are among the most
familiar and widely studied networks in biology. More specifically, using the heat shock response
as a case study, we study the important problems of model validation/invalidation and robustness
analysis. The analysis of the heat shock system is carried for a deterministic mathematical model
that assumes that the interactions between the various cellular components are continuous processes
with no uncertainty, while the analysis we present for the bacteriophage λ is carried in a more
natural stochastic context. The stochastic phenomena are particularly interesting in multi-stable
systems where the interaction of large noise intensities could, for example, lead to random switching
from one cellular state to another. Here we demonstrate how our algorithms can be used to alleviate
the computational burden involved in computing bounds on probabilities for the occurrence of rare
biological events, using a genetic switch implemented in the bacteriophage λ.

3.1.1 Mathematical Background

Robust Stability Analysis At the deterministic level, biological networks are usually modeled
as a set of autonomous Ordinary Differential Equations (ODEs) of the form:

ẋ = f(x), (4)

where ẋ denotes the derivative of x with respect to time, and x = (x1, . . . , xn) are the state
variables. Here f is a function that takes points in D, a subset of Rn and maps them to Rn, i.e.,
f : D → Rn with D ⊆ Rn. We assume further that f is locally Lipschitz for x ∈ D, a condition
that guarantees local existence and uniqueness of solutions [54]. Let x∗ be an equilibrium point of
(4), i.e. f(x∗) = ẋ∗ = 0. Without loss of generality, we assume that x∗ = 0 — a simple change of
coordinates can achieve this — and study the stability properties of this equilibrium. The following
notions of stability is standard.

Definition 1 Let ‖ · ‖ denote a norm in Rn. The zero equilibrium of (4) is:

• Stable, if for each ε > 0 there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0.

• Asymptotically stable if it is stable, and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0.

20

Theese definitions of stability involve ε − δ formulations. Generally speaking, the stability
condition requires that if the initial condition is close to the equilibrium, then the system trajectory
will stay close to the equilibrium; the asymptotic stability condition not only asks for stability, but
also asymptotic convergence to the equilibrium point. Such conditions give the impression that
a complete description of the flow of the vector field is required to answer stability questions. It
is fortunate that in many cases this is not essential; instead, stability can be proved directly by
exhibiting a so-called Lyapunov function [54].

Theorem 2 ([54]) Consider the system (4), and let D ⊆ Rn be a neighborhood of the origin. If
there is a continuously differentiable function V : D → R such that the following two conditions
are satisfied:

1. V (x) > 0 for all x ∈ D \ {0} and V (0) = 0, i.e., V (x) is positive definite in D;

2. −V̇ (x) = −∂V
∂x f(x) ≥ 0 for all x ∈ D, i.e., V̇ (x) is negative semidefinite in D;

then the origin is a stable equilibrium. If in condition (2) above, V̇ (x) is negative definite in D,
then the origin is asymptotically stable. If D = Rn and V (x) is radially unbounded, i.e., V (x) →∞
as ‖x‖ → ∞, then the result holds globally.

V (x) in the previous theorem is called a Lyapunov function, while the surface V (x) = a for
some a > 0 is called a Lyapunov surface. Therefore, the condition V̇ (x) ≤ 0 indicates that when a
trajectory of the system crosses V (x) = a, it subsequently stays within the set {x ∈ Rn|V (x) ≤ a}.
Furthermore, the condition V̇ (x) < 0 indicates that a trajectory moves from one Lyapunov surface
to another with a smaller a, eventually approaching the origin.

Constructing Lyapunov functions for nonlinear systems is notoriously difficult. In the past, this
led to the development of other methods for assessing nonlinear system properties. For example, in
Lyapunov’s indirect method, one proceeds by linearizing the vector field about the equilibrium and
the stability properties of the original nonlinear system are inferred from the stability properties
of the linearized system. However, such stability results are valid only locally and the procedure
is inconclusive when the linearized system has imaginary axis eigenvalues. Other methodologies
involve absolute stability theory [27], Linear Parameter Varying (LPV) embeddings [36, 73, 105],
and Integral Quadratic Constraint (IQC) formulations [67].

Amid these difficulties, a new computationally attractive methodology for nonlinear stability
analysis has been recently introduced by Parrilo in [78]. It is based on the sum of squares decom-
position (cf. Section 2.1) and uses semidefinite programming to construct functions that satisfy
the conditions in Lyapunov’s Theorem 2. The methodology generalizes the linear matrix inequal-
ity method for constructing quadratic Lyapunov functions for linear time-invariant systems to
constructing Lyapunov functions for nonlinear systems. Assume for simplicity that f(x) is a poly-
nomial vector field, i.e., fi(x) are polynomials in x = (x1, . . . , xn) for i = 1, . . . , n. Suppose that
we also wish to construct a V (x) that is also polynomial in x. In this case, the two conditions in
Theorem 2 become polynomial nonnegativity conditions. To circumvent the difficult task of testing
them directly, we can restrict our attention to the case in which the two conditions admit sum of
squares (SOS) decompositions.

In order to impose positive definiteness (rather than positive semi-definiteness) on V (x), we
construct an auxiliary positive definite ‘shaping’ function ϕ(x) as follows:

ϕ(x) =
n∑

i=1

d∑
j=1

εijx
2j
i ,

m∑
j=1

εij ≥ γ ,∀ i = 1, . . . , n, (5)

21

where γ > 0, and εij ≥ 0 ∀ i, j. This makes ϕ(x) > 0, i.e. positive definite. If we then impose
V (x)− ϕ(x) to be a SOS, we get the obvious relation

V (x)− ϕ(x) ≥ 0 ⇒ V (x) ≥ ϕ(x) > 0. (6)

Overall, we have the following proposition:

Proposition 3 Given a polynomial V (x) of degree 2d, let ϕ(x) be given by Equation (5). Then,
the condition

V (x)− ϕ(x) is a sum of squares (7)

guarantees the positive definiteness of V (x).

In light of this proposition, testing global stability for D = Rn following the conditions of
Theorem 2 can be formulated directly as SOS conditions. It can be specifically formulated as the
following sum of squares program:

Program 4 To construct a Lyapunov function for system (4), find a polynomial V (x), V (0) = 0,
and a positive definite function ϕ(x) of the form (5), such that

V (x)− ϕ(x) is SOS (8)

− ∂V

∂x
f(x) is SOS (9)

The function V (x) found this way is a Lyapunov function for system (4) and the zero equilibrium
of (4) is stable since the above program guarantees that V (x) is positive definite and also that V̇ (x)
is negative semidefinite. Note also that by construction ϕ(x) is radially unbounded; therefore, V (x)
will also be radially unbounded, and the stability property holds globally [54]. Also, if condition
(9) is replaced by

−∂V
∂x

f(x)− ψ(x) is SOS, (10)

where ψ(x) is a positive definite polynomial constructed as per (5), then V̇ (x) is negative definite
and the origin is globally asymptotically stable.

To tackle more biologically relevant problems, we extend here Lyapunov’s theorem to systems
that evolve under equality, inequality, and integral constraints. This is a very general class of
systems, special cases of which are differential algebraic equations, robust stability analysis and
performance evaluation. Furthermore, this extension allows for the treatment of non-polynomial
vector fields.

Inequality constraints arise naturally in biological networks, as the states in biochemical reac-
tions (concentrations of species) are always non-negative. The same type of inequality constraints
can be further used to describe uncertain parameter sets for the study of robust stability of systems
in the presence of parametric uncertainty. Equality constraints also prove useful in robust stability
analysis where they appear as constraints guaranteeing that the equilibrium of the system is at the
origin. Equality constraints can also naturally appear in systems that are constrained to evolve over
a manifold [26]. For example, equality constraints in biological systems can arise due to conserva-
tion laws – usually in the form of mass balance equations. Finally, integral type constraints can also
be incorporated. In particular, one can consider Integral Quadratic Constraints (IQCs) [67], which
provide a rich framework that encapsulates many types of uncertainty and unmodelled dynamics:
dynamic, time-varying and L2 bounded uncertainty, just to name a few. Performance calculations
such as L2 input-output gain estimation can also be formulated using IQCs .

22

To put these ideas in a more rigorous setting, we consider the nonlinear system

ẋ = f(x, u), (11)

with the following inequality, equality, and integral constraints that are satisfied by x and u:

ai1(x, u) ≤ 0, for i1 = 1, . . . , N1, (12)
bi2(x, u) = 0, for i2 = 1, . . . , N2, (13)∫ T

0 ci3(x, u)dt ≤ 0, for i3 = 1, . . . , N3, and ∀ T ≥ 0. (14)

Here x ∈ Rn is the state of the system, and u ∈ Rm is a collection of auxiliary variables (such as
inputs, non-polynomial functions of states, uncertain parameters, etc). We assume that f(x, u),
apart from the required Lipschitz conditions for existence of solutions, has no singularity in D,
where D ⊆ Rn+m is defined as

D = {(x, u) ∈ Rn+m | ai1(x, u) ≤ 0, bi2(x, u) = 0,∀i1 and i2}.

Without loss of generality, it is also assumed that f(x, u) = 0 for x = 0 and u ∈ D0
u, where D0

u =
{u ∈ Rm|(0, u) ∈ D}. The following theorem is an extension of Lyapunov’s stability theorem, and
can be used to prove that the origin is a stable equilibrium of the above system. It uses a technique
reminiscent of the well-known S-procedure [123] in nonlinear and robust control theory [17], which
is similar to adjoining the equality, inequality and IQC conditions to the Lyapunov conditions using
appropriate multipliers.

Theorem 5 [76] Suppose that for system (11), there exist functions V (x), p1i1
(x, u) ≥ 0, p2i1

(x, u) ≥
0, q1i2

(x, u), q2i2
(x, u) and constants ri3 ≥ 0 such that

V (x) +
∑

p1i1
(x, u)ai1(x, u) +

∑
q1i2

(x, u)bi2(x, u) > 0, (15)

− ∂V

∂x
f(x, u) +

∑
p2i1

(x, u)ai1(x, u) +
∑

q2i2
(x, u)bi2(x, u) +

∑
ri3ci3(x, u) ≥ 0 (16)

Then the origin of the state space is a stable equilibrium of the system.

When the vector field f(x, u) is rational, i.e., f(x, u) = n(x,u)
d(x,u) with d(x, u) 6= 0 in D, condition

(16) can be multiplied by the non-vanishing denominator. Rational vector fields are common in
biological systems, usually arising from Michaelis-Menten approximations.

Theorem 5 can now be used to analyze various cases of systems with constraints. Now, we
demonstrate how V (x) in Theorem 5 can be constructed using the SOS technique. For this, we
need to make some assumptions.

• The vector field fx(x, u) is assumed to be polynomial or rational, and the constraint functions
ai1(x, u), bi2(x, u), ci3(x, u) are assumed to be polynomial. This assumption may be removed
through a recasting process [77].

• We search for a bounded degree polynomial Lyapunov function V and multipliers pi1 , qi1 ,
i1 = 1, . . . , N1 and pi2 , qi2 , i2 = 1, . . . , N2.

Under these assumptions, the search for a Lyapunov function can be relaxed by the following
proposition in which all ‘≥’ conditions are essentially relaxed to SOS conditions, making their
search computationally efficient using semidefinite programming and SOSTOOLS.

23

Proposition 6 Suppose that for system (11) with f(x, u) = n(x,u)
d(x,u) where n(x, u) and d(x, u) are

polynomials and d(x, u) > 0 in D, there exist polynomial functions V (x), p1i1
(x, u), p2i1

(x, u),
q1i2

(x, u), q2i2
(x, u), a positive definite function ϕ(x) of the form given in Equation 5 and constants

ri3 ≥ 0 such that

V (x) +
∑

p1i1
(x, u)ai1(x, u) +

∑
q1i2

(x, u)bi2(x, u)− ϕ(x) is SOS,

p1i1
(x, u), p2i1

(x, u) are SOS for i1 = 1, . . . , N1, (17)

d(x, u)
(

−∂V
∂x f(x, u) +

∑
p2i1

(x, u)ai1(x, u)
+

∑
q2i2

(x, u)bi2(x, u) +
∑
ri3ci3(x, u)

)
is SOS. (18)

Then the origin of the state space is a stable equilibrium of the system.

It is now clear how V (x), p1i1
(x, u), p2i1

(x, u), q1i2
(x, u), q2i2

(x, u), the constants ri3 and the
positive definite function ϕ(x) can be constructed using SOSTOOLS [91], and a program similar
to Program 4 can be constructed.

Model Invalidation Model validation provides a way to evaluate the ability of a proposed model
to represent observed system behaviors. However, as often pointed out in the literature, “model
validation” is actually a misnomer [30,82,108]. It is impossible to validate a model, because to do
so requires an infinite number of experiments and data. The role of model validation techniques
is rather to invalidate a model, by proving that some experimental data are inconsistent with the
model, thus indicating that a refinement of the model is required.

We will present a methodology recently developed for invalidation of continuous-time nonlinear
models with uncertain parameters [84]. The methodology is based on functions of state-parameter-
time termed barrier certificates. The existence of a barrier certificate generates a contradiction
between model and some time-domain experimental data, in the sense that some level sets of this
certificate act as barriers between possible model trajectories and data. With this methodology,
model validation of a very large class of continuous-time models, including differential-algebraic
models [19], models with uncertain inputs [67], models with memoryless and dynamic uncertainties
[54, 67], hybrid models [119], and their combinations. Moreover, similar to Lyapunov functions,
barrier certificates can be computed using the sum of squares decomposition and semidefinite
programming, e.g., using the SOSTOOLS software [91,115].

In the simplest setting, consider again the system of ordinary differential equations

ẋ(t) = f(x(t), p, t), (19)

where x(t) ∈ Rn is the vector of state variables, t is time, and p ∈ Rm is the parameter vector,
assumed to take its value in a set P ⊂ Rm. Let an experiment be performed with the real system,
and two measurements be taken at time t = 0 and t = T . Suppose that these measurements
indicate that x(0) ∈ X0 and x(T) ∈ XT , where both X0 and XT are subsets of Rn. In addition,
assume that x(t) ∈ X for all t ∈ [0, T], where X ⊆ Rn. The invalidation problem can then be
stated as follows:

Problem 7 Given the model (19), parameter set P , and trajectory information {X0, XT , X}, prove
that for all possible parameter p ∈ P , the model (19) cannot produce a trajectory x(t) such that
x(0) ∈ X0, x(T) ∈ XT , and x(t) ∈ X, ∀t ∈ [0, T].

24

If such a proof in Problem 7 can be found, then we say that the model (19) and parameter set
P are invalidated by {X0, XT , X}.

Traditional approaches for solving this problem include exhaustive simulation of (19) using
parameters p and initial conditions x(0) sampled randomly from P and X0. If after many such
simulations no trajectory x(t) that satisfies the initial hypothesis can be found, then an inconsis-
tency is concluded. Indeed simulation (possibly after parameter fitting) is a good way for proving
that a model can reproduce some behaviors of the system it represents. However, for proving
inconsistency, the required number of simulation runs will soon become prohibitive. Moreover, a
proof by simulation alone is never exact, simply because it is impossible to test all p and x(0).

Instead of exhaustive simulations, our method relies on the existence of a function of state-
parameter-time, which we term barrier certificate. A barrier certificate gives an exact proof of
inconsistency by providing a barrier between possible trajectories of the model starting at X0 and
the final measurement XT . This is accomplished without performing any simulation nor computing
the flow of the model. The method is summarized in the following theorem.

Theorem 8 ([84]) Let the model (19) and the sets P,X0, XT , X be given, with f(x, p, t) being
continuous in x and t. Suppose that there exists a real-valued function B(x, p, t) that is differentiable
with respect to x and t, such that

B(xT , p, T)−B(x0, p, 0) > 0
∀(xT , x0, p) ∈ XT ×X0 × P, (20)

∂B

∂x
(x, p, t)f(x, p, t) +

∂B

∂t
(x, p, t) ≤ 0

∀(x, p, t) ∈ X × P × [0, T]. (21)

Then the model (19) and its associated parameter set P are invalidated by {X0, XT , T}. (In the
sequel, we will call the function B(x, p, t) a barrier certificate.)

Similar to the case of Lyapunov functions, construction of barrier certificates is in general
not easy. However, for models with polynomial vector fields and sets P,XTi , X, Ui described by
polynomial equalities and inequalities, a tractable computational relaxation for constructing barrier
certificates exists. The relaxation is provided by the sum of squares decomposition and semidefinite
programming, much in the spirit of the algorithmic construction of Lyapunov functions for nonlinear
systems presented in the previous subsection.

Stochastic Verification Computing bounds on probability in inherently stochastic biological
systems, as well as the statistics for the occurrence or lack thereof of decisive or catastrophic events
is a crucial problem. However, such computations are usually very challenging, and can be carried
analytically or numerically only for a handful of examples. In this section, a technique based on
the sum of squares approach that was recently developed [87, 88] for the algorithmic computation
of probability bounds on the occurrence of these events will be described.

For our exposition, we consider a complete probability space (Ω,F , P) and a standard Rm-
valued Wiener process w defined on this space [72]. The class of models that we use is stochastic
differential equations of the form

dx(t) = f(x(t))dt+ g(x(t))dw(t) (22)

where x(t) ∈ Rn, and t ≥ 0. We denote the state space, the set of initial states, and the set of
decisive/unsafe states by X ,X0, and Xu, respectively. All of these are subsets of Rn and assumed

25

compact. To guarantee the existence and uniqueness of solution, we will also assume that both f(x)
and g(x) satisfy the local Lipschitz condition and the linear growth condition on X . For bounded
X , the last condition can be replaced by the boundedness of f and g on X . It can then be shown
that the process x(t) described above is a strong Markov process.

Since in general the process x(t) is not guaranteed to always lie inside the set X , we define the
stopped process x̃(t) corresponding to x(t) and X as follows.

Definition 9 Suppose that τ is the first time of exit of x(t) from the open set Int(X). The stopped
process x̃(t) is defined by

x̃(t) =
{
x(t) for t < τ,
x(τ) for t ≥ τ.

The stopped process x̃(t) satisfies various properties. For example, it inherits the right continuity
and strong Markovian property of x(t). Furthermore, in most cases the so-called infinitesimal
generator corresponding to x̃(t) is identical to the one corresponding to x(t) on the set Int(X), and
is equal to zero outside of this set [58]. This will be implicitly assumed in our analysis.

Having defined the system and the stopped process x̃(t), we can now state the stochastic
verification problem as follows.

Problem 10 Given the system (22) and the sets X , X0 and Xu, compute an upper bound for the
probability of a process x̃(t) starting at X0 to reach Xu. In other words, find γ ∈ [0, 1] such that
P{x̃(t) ∈ Xu for some t ≥ 0 | x̃(0) = x0} ≤ γ for all x0 ∈ X0.

Obviously, it is of interest to obtain an upper bound γ that is as tight as possible. Our approach
to solve the above problem is based on finding an appropriate function B(x) from which we can
deduce an upper bound γ. We will also call the function B(x) a barrier certificate, as it will need
to satisfy some conditions that can be considered as the stochastic counterpart of the conditions in
the previous subsection. For example, instead of requiring the value of B(x(t)) to be non-increasing
along time, we ask that the expected value of B(x(t)) decreases or stays constant as time increases.
A process satisfying such a property is called a supermartingale (see [72] for the technical definition).
Using a known supermartingale inequality [58], the probability bound can then be inferred from
B(x), as summarized in the following theorem.

Theorem 11 ([88]) Let the stochastic differential equation (22) and the sets X ,X0,Xu be given,
and consider the stopped process x̃(t). Suppose that there exists a twice continuously differentiable
function B : Rn → R, such that

B(x) ≥ 0 ∀x ∈ X (23)
B(x) ≥ 1 ∀x ∈ Xu (24)
B(x) ≤ γ ∀x ∈ X0 (25)

∂B

∂x
(x)f(x) +

1
2
Trace

(
gT (x)

∂2B

∂x2
(x)g(x)

)
≤ 0 ∀x ∈ X (26)

then

P{x̃(t) ∈ Xu for some t ≥ 0 | x̃(0) = x0} ≤ γ (27)

for all x0 ∈ X0.

26

With regard to computation, an upper bound γ and a barrier certificate B(x) which certifies the
upper bound can be computed by formulating conditions (23)–(26) as a sum of squares optimization
problem. Furthermore, γ can be chosen as the objective function whose value is to be minimized.
The minimum value of γ obtained from the optimization will be the tightest upper bound for a given
set of candidate barrier certificates. Obviously, as we include more candidate barrier certificates to
this set, we may get a better bound, although there is a trade-off between using a larger set and
the computational complexity of finding a barrier certificate within the set.

3.1.2 Application to Gene Regulatory Networks

In order to put the biological models of this section in context, we present a brief introduction to
the cellular processes involved in gene expression, in addition to the concept of a gene regulatory
network.

Gene Regulatory Networks and the Central Dogma of Molecular Biology The synthesis
of cellular proteins is a multi-step process that involves the use of various cellular machines [1].
One very important machine in bacteria is the so called RNA polymerase (RNAP). RNAP is an
enzyme that can be recruited to transcribe any given gene. However, RNAP bound to regulatory
sigma factors recognizes specific sequences in the DNA, referred to as the promoter. Whereas
the role of RNAP is to transcribe genes, the main role of σ factors is to recognize the promoter
sequence and signal to RNAP in order to initiate the transcription of the appropriate genes. The
transcription process itself consists of synthesizing a messenger RNA (mRNA) molecule that carries
the information encoded by the gene. Here, RNAP acts as a “reading head” transcribing DNA
sequences into mRNA. Once a few nucleotides on the DNA have been transcribed, the σ-factor
molecule dissociates from RNAP, while RNAP continues transcribing the genes until it recognizes
a particular sequence called a terminator sequence. At this point, the mRNA is complete and
RNAP disengages from the DNA. During the transcription process, ribosomes bind to the nascent
mRNA and initiate translation of the message. The process of translation consists of sequentially
assembling amino acids in an order that corresponds to the mRNA sequence, with each set of
three nucleotides corresponding to a single unique amino acid. This combined process of gene
transcription and mRNA translation constitutes gene expression, and is often referred to as the
central dogma of molecular biology.

Gene regulatory networks can be broadly defined as groups of genes that are activated or
deactivated by particular signals and stimuli, and as such produce or halt the production of certain
proteins. Through combinatorial logic at the gene or the end-product protein level, these networks
orchestrate their operation to regulate certain biological functions such as metabolism, development,
or the cellular clocks. Regulation schemes in gene regulatory networks often involve positive and
negative feedback loops. A simple scheme consists, for example, of a protein that binds to the
promoter of its own gene and shields it from the RNAP-σ complex, thereby auto-regulating its own
production. When interfaced and connected together according to a certain logic, a network of such
building blocks (and possibly others possessing different architectures and components) generates
intricate systems that possess a wide range of dynamical behaviors and functionalities.

Robust Stability Analysis of the Heat Shock Response in E. coli In this section, we
describe the biology of the heat shock response system, an essential cellular mechanism conserved
in most organisms. Extensive experimental probing of the architecture of the heat shock system
has unraveled a number of feedback and feedforward loops whose presence posed many essential

27

questions. First, and perhaps foremost, does the current knowledge span all the structural com-
ponents and interactions in the system or did experimental investigation miss crucial parts? If so,
can a model describing the known components identify this knowledge gap when contrasted with
data? Even if such investigations confirm the completeness of our knowledge of the system, can
we decipher the salient features of its architecture and identify the functional roles of its parts.
For example, what is the functional relevance of the seemingly redundant loops in the heat shock
system? Is the system robust to operational fluctuations? If so, how is this robustness connected
to the architecture?

These questions are of course of general relevance to many biological systems, but are at the
same time immensely challenging. Here, we use the heat shock response as a case study to formulate
and address concisely particular aspects of robustness analysis and model invalidation, all in the
context of our new mathematical machinery. The heat shock response is particularly suited for such
an investigation because of the wealth of experimental and mathematical information available for
the system [32].

The Heat Shock Response in E. coli High temperatures cause cell proteins to unfold from
their normal shapes, resulting in malfunctioning and eventually death of the cell. Cells have evolved
gene regulatory mechanisms to counter the effects of heat shock by expressing specific genes that
encode heat shock proteins (hsps) whose role is to help the cell survive the consequence of the shock.
In E. coli, the heat shock (HS) response is implemented through an intricate architecture of feedback
loops centered around the σ-factor that regulates the transcription of the HS proteins under normal
and stress conditions. The enzyme RNA polymerase (RNAP) bound to this regulatory sigma
factor, σ32, recognizes the HS gene promoters and transcribes specific HS genes. The HS genes
encode predominantly molecular chaperones (DnaK, DnaJ, GroEL, GrpE, etc.) that are involved
in refolding denatured proteins and proteases (Lon, FtsH, etc.) that function to degrade unfolded
proteins. At physiological temperatures (30◦C to 37◦C), there is very little σ32 present and hence
little transcription of the HS genes. When bacteria are exposed to high temperatures, σ32 first
rapidly accumulates, allowing increased transcription of the HS genes and then declines to a new
steady state level characteristic of the new growth temperature. There are two mechanisms by
which σ32 levels are increased when the temperature is raised [113]. First, the translation rate of
the rpoH mRNA (encoding σ32) increases immediately, resulting in a fast 10-fold increase in the
concentration of σ32 [70]. This mechanism implements what we refer to as the feedforward control
loop. Second, during steady state growth, σ32 is rapidly degraded (t1/2 = 1 minute), but is stabilized
for the first five minutes after temperature upshift, so that its concentration rapidly increases. In
vivo evidence is consistent with the following titration model for the HS response. DnaK and its
cochaperone DnaJ are required for the rapid degradation of σ32 by the HS protease FtsH. Raising
the temperature produces an increase in the cellular levels of unfolded proteins that then titrate
DnaK/J away from σ32, allowing it to bind to RNA polymerase (resulting in increased trancription)
and stabilizing it in the process. Together, increased translation and stabilization lead to a transient
15-20 fold increase in the amount of σ32 at the peak of the HS response. The accumulation of high
levels of HS proteins leads to the efficient refolding of the denatured proteins thereby decreasing the
pool of unfolded protein, freeing up DnaK/J to sequester this protein from RNA polymerase. This
implements what is referred to as a sequestration feedback loop. Furthermore, this sequestration
itself promotes the degradation of σ32 and results in feedback regulated degradation, mainly by
the protease FtsH. We refer to this as the FtsH degradation feedback loop. The overall result is a
decrease in the concentration of σ32 to a new steady state concentration that is dictated by the
balance between the temperature-dependent translation of the rpoH mRNA and the level of σ32

28

Figure 1: Molecular implementation of the heat shock response system

activity modulated by the hsp chaperones and proteases acting in a negative feedback fashion. The
molecular interactions describing the heat shock response are pictorially illustrated in Figure 1.

A Reduced Order Model for the HS Response In a previous study, we have developed a
detailed deterministic mathematical model for the heat stress response in E. coli [31,32,57]. Specif-
ically, the dynamics described above were modeled using differential rate equations, generating a
set of 31 Differential-Algebraic Equations (DAEs) of the form

Ẋ(t) = F (t;X;Y)
0 = G(t;X;Y)

where X is an 11-dimensional vector whose elements are the differential variables and Y is a
20-dimensional vector whose elements are algebraic variables. This form is known as a semi-
explicit DAE. The model possesses 27 kinetic rate parameters. Subsequently, a reduced order
model was derived using insight into the system’s architecture and separation principles in time
and concentrations. As in the full model, this reduced model involves the dynamics of the basic
building blocks of the HS response, namely the σ factor (S), the chaperones (D), and the protein

29

Parameter Value
Kd 3 min−1

αd 0.015 min−1

η(T) 10 molecule.min−1@ T1 & 60 @ T2

α0 0.03 min−1

αs 3 min−1

Ks 0.05 molecule−1

Ku 0.0254 molecule−1

K(T) 40 min−1 @ T1 & 80 min−1 @ T2

Kfold 6000 min−1

Pt 2× 106 molecules

Table 2: Parameter Values for Heat Shock model

folding mechanism. The model equations are as follows

dDt

dt
= KdSf − αdDt

dSt

dt
= η(T)− α0St − αsS : D

dUf

dt
= K(T)Pfolded −KfoldU : D

S : D = Ks.Sf .Df

U : D = Ku.Uf .Df

Dt = Df + U : D + S : D
St = Sf + S : D
Pt = Pfolded + Uf + U : D (28)

where U : D is the complex formed by the binding of the unfolded proteins Uf to D, S : D is
the complex formed by the binding of S to D, and Pt is the total number of proteins in the cell,
considered here to be constant. The parameters used in this model are given in Table 2. We replace
the algebraic constraints into the initial system (28), then use the facts that St � Dt and that
Uf � 1 in the wild type bacterial HS response and simplify the expression for Sf and Df . Simple
algebraic manipulations yield a compact description for the reduced order HS model:

dDt

dt
= f1(Dt, Uf , St)− αdDt

dSt

dt
= η(T)− α0.St − f2(Dt, Uf , St)

dUf

dt
= K(T)[Pt − Uf]− [K(T) +Kfold]Dt (29)

As in the original equations, the feedforward control is achieved by the temperature dependent
function η(T) in the ODE describing the dynamics of St. f1(Dt, Uf , St) = Kd

St

1+
KsDt

1+KuUf

and

f2(Dt, Uf , St) = αs

KsDt
1+KuUf

1+
KsDt

1+KuUf

St describe the various feedback strategies implemented in the HS

response. f1 is the effect of the sequestration of S by D on D formation, while f2 reflects the effect
of the regulated degradation of S through the action of the sequestration itself. The dynamics of

30

(a) (b)

Figure 2: Plots of σ32 (a) and unfolded proteins (b) in the heat shock response system

the third state Uf are much faster than those of St and Dt. Such stiffness is also strongly present
in the full model and creates ill-conditioning and algorithms that do not exploit stiffness are almost
certainly doomed to suffer from it. However, stiffness can also be exploited to robustly produce
simplified models by singular perturbation, as was done in deriving the 3-state from the full model.
By further setting dUf

dt = 0 to obtain a quasi-steady state approximation, the third equation is then
replaced by an algebraic one, and the result is again a differential-algebraic equation (DAE). The
validity of this approximation has been verified by simulation which showed virtually no difference
in the solution of the ODE as compared to that of the DAE. A time course for σ32 and the level of
unfolded proteins is shown in Figure 2.

Results for Robustness Analysis of the HS System For the heat shock model, we can
consider the problem of proving robust stability for the system under parametric uncertainty.
We proceed by non-dimensionalizing the states of (29) by their equilibrium values (Dt0 , St0 , Uf0),
followed by a shifting of the equilibrium of the system to the origin. We then obtain a system with
states (x1, x2, x3) that is better conditioned, in the sense that the states are of the same order of
magnitude:

dx1

dt
= f̃1(x1, x2, x3)− αdx1

dx2

dt
= η̃(T)− α0x2 − f̃2(x1, x2, x3) (30)

dx3

dt
= K(T)[P̃t − x3]−KTotx1

with f̃1(x1, x2, x3) = K̃d
x2

1+
K̃sx1

1+K̃ux3

and f̃2(x1, x2, x3) = αsx2

K̃sx1
1+K̃ux3

1+
K̃sx1

1+K̃ux3

, and where K̃d = KdSt0/Dt0 ,

K̃s = KsDt0 , K̃u = KuUf0 , η̃ = η/St0 , P̃t = Pt/Uf0 and KTot = Dt0(K(T) + Kfold)/Uf0 . We
then use dx3

dt = 0 to get a 2-D state-space (x1, x2). To proceed, we first define the region D in the
state-space where a Lyapunov function is to be constructed:

D = {xi ∈ R : (xi − xi0)
2 − γ2

i ≤ 0, i = 1, 2} (31)

with γi = 0.2, xi0 denoting the equilibrium of the i-th state. For robust stability analysis purposes,
we pick two important parameters, η̃ and αs. η̃ depicts the feedforward gain, while αs forms part

31

Figure 3: Robust stability of the model of Heat Shock in E-coli.

of the feedback gain. We ask whether the equilibrium of the system described by (29) is stable for
all values of η̃ and αs in a certain range for T = T1:

P = {η̃, αs ∈ R2 : (η̃ − η̃0)2 − (γ3η̃0)2 ≤ 0, (αs − αs0)
2 − (γ4αs0)

2 ≤ 0},

with γ3 and γ4 measuring the percentage variation. As these parameters change, the equilibrium
of the system also changes. Therefore, in order to fix the equilibrium at the origin, we impose two
equality constraints of the form: αdαsK̃sx

2
10
− [K̃d(η̃(T1)−α0x20)

(
1 + K̃u

(
P̃t − KTot

K(T1)x10)
))

] = 0

and K̃sK̃d(η̃(T1)− α0x20)− αsK̃s(K̃dx20 − αdx10) = 0.
Note that the vector field is rational, but this case can be treated using Theorem 5 by multiplying

out by the (non-vanishing) common denominator of the vector field. Robust stability analysis
is then carried out by constructing a parameter-dependent Lyapunov function, using the results
in proposition 6 and SOSTOOLS. We start with a quadratic Lyapunov function V that is not
parameterized by any parameters; in this case, we could prove stability for γ3 = γ4 = 0.45. When
the Lyapunov function is parameterized by αs and η̃, we could construct a Lyapunov function for
γ3 = γ4 = 0.53. By increasing the complexity of the certificate, we could construct a Lyapunov
function for a larger parameter range. In this case, while the equilibrium is stable for even larger
parameter sets, the other equilibrium in the system (which is unstable) approaches the equilibrium
of interest. Therefore, to prove stability for a larger parameter set, we need to reduce the size of
the region D and increase the order of the Lyapunov function. Figure 3 shows the level curves of
the Lyapunov function for two sets of parameters in a parameter set with γ3 = γ4 = 0.53.

Validation/Invalidation of the Model of Heat Shock Response in E. coli The new
methodology in conjunction with SOSTOOLS can be used to address the critical issue of model
validation/invalidation in biological modeling. The key ideas of this methodology can be illustrated
in the context of the heat-shock example, where at least two feedback loops are involved in the
regulation scheme. We will show rigorously that each loop adds its own important function to the
overall system and that both are necessary to explain the phenotypic behavior of the heat shock
system. In previous work, we have used sensitivity analysis and confirmed that these feedback
loops indeed increase the robustness to parametric uncertainty [31]. However, upon disabling

32

the degradation (FtsH) feedback loop, one observes in simulation that the transient response to
a temperature increase becomes considerably slower. Achieving a faster transient response in the
absence of this (FtsH) feedback loop necessitates a substantial increase in the protein synthesis rate,
and therefore, produces a larger number of chaperones. Therefore, it is reasonable to conjecture
that the (FtsH) feedback loop is instrumental in achieving a fast response to the heat disturbance
while using a relatively modest number of chaperones.

To actually prove such a conjecture using the invalidation scheme in Section 3.1.1, we will
generate some “data” using the model with the degradation (FtsH) loop (29), and compare it
to a hypothesized model lacking this feedback. If we denote the state variables (Dt, St, Uf) by
(x1, x2, x3), then the hypothesized model will just be ẋ = f(x, p), where the vector field are defined
by (29), without the degradation loop. The parameters p will be defined below. A numerical
experiment (i.e., a simulation) with the full system is performed, with the parameters fixed at
the nominal values. We observe that the corresponding system trajectory satisfies x(0) ∈ X0 and
x(25) ∈ XT , where

X0 = {x ∈ R3 : x1 ∈ [0.9D0, 1.5D0], x2 ∈ [0.9S0, 1.5S0], x3 ∈ [2.9U0, 3.1U0]} (32)
XT = {x ∈ R3 : x1 ∈ [1.5D0, 2.5D0], x2 ∈ [2S0, 3S0], x3 ∈ [0.5U0, 1.5U0]} (33)

with D0, S0, and U0 denoting their steady state values at low temperature. Note that we use inter-
vals here to take into account the effects of measurement uncertainty, variation of initial conditions,
and so on. In addition, we also observe that between time t = 0 and t = 25, the state variables
satisfy x(t) ∈ X, with

X = {x ∈ R3 : x1 ∈ [0.9D0, 2.5D0], x2 ∈ [0.9S0, 8S0], x3 ∈ [0.2U0, 4U0]}. (34)

For the hypothesized model, we will focus on three parameters p = (Kd, α0, η(T)), and assume that
the rest are fixed at the nominal values. Plausible ranges for these parameters define the parameter
set P :

P = {(Kd, α0, η(T)) ∈ R3 : 0.5Kd ≤ Kd ≤ 5Kd,

0.5α0 ≤ α0 ≤ 1.5α0, 0.5η(T) ≤ η(T) ≤ 1.5η(T)}, (35)

where Kd, α0, and η(T) denote their nominal values. We deliberately make the upper bound for
Kd quite large, since one obvious way for obtaining a fast response is to increase the number of
chaperones, corresponding to increasing this parameter. With our method, we can find a barrier
certificate for these model and data, in effect proving that the model without the degradation
(FtsH) loop and with parameters Kd, α0, η(T) satisfying (35) cannot possibly generate a time
response that satisfies (32)–(34). This indicates that an inherent mechanism is missing from this
model. When the FtsH mechanism is included, obviously there are values for parameters Kd, α0,
and η(T) (for example, we can simply choose the nominal values Kd, α0, and η(T)) such that the
model has a time response that satisfies (32)–(34).

Stochastic Reachability Analysis of the Bacteriophage Lambda One of the best studied
examples of multistability in genetic systems is the bacteriophage λ system [2, 96]. This system
has largely been used as a prototype for the investigation of stochasticity in cellular networks, and
an illustration of the mathematical challenges that reside in such investigations. Phages are viral
organisms that can either be in the lysogenic (latent) or lytic (active) state. If following its infection
of E. coli, the λ-phage virus enters the lysogenic pathway, it represses its own developmental

33

functions and integrates its DNA into the host chromosome. Otherwise, it enters the lytic pathway
and is active. The dynamics of the transcriptional network underlying the formation of these
states are very complex, and have been thoroughly studied [96, 106]. Instead of describing the full
complexity of the λ-phage system, we limit ourselves here to a simplified model of the process that
still captures the essence of its exhibited bistability, in addition to the interplay between noise and
dynamics in its operation.

The λ-Phage One-Dimensional Model The representative simple model we adopt was first
discussed by Hasty et al. [46], and is intended to be a minimal model that captures the bistable
nature of the λ system. The model describes the dynamics of the CI protein, the product of the
cI gene. CI, acting as a dimer, can regulate its own synthesis by binding to the cI gene promoter
region OR2 and increasing transcription or to gene promoter OR3 and repressing transcription.
It can also bind to a third gene promoter OR1, which we ignore in this model for simplicity. We
assume the fast binding reactions (such as binding and dissociation) to be in equilibrium with
respect to the slow reactions (such as protein synthesis and degradation). Under this assumption,
and following [46], we let X,X2, and D denote the repressor, repressor dimer, and DNA promoter
site respectively. Then, the equilibrium reactions can be written as

2X
K1

 X2, D +X2

K2

 DX2,

D +X2
K3

 DX∗

2 , DX2 +X2
K4

 DX2X2 (36)

where the DX2 and DX∗
2 complexes denote binding to the OR2 or OR3 sites, respectively, DX2X2

denotes binding to both sites, and the Ki are forward equilibrium constants. We further set
K3 ' K2 and K4 ' 5K2.

The slow reactions are transcription and degradation. At first, we assume that translation is
a fast process and therefore lump its dynamics with those of transcription. Later, we will relax
this assumption in order to construct a higher order model of the system. The molecular reactions
describing the slow dynamics are given by

DX2 + P
kt−→ DX2 + P + nX, X

kd−→ A

where P denotes the concentration of RNA polymerase, and n is the number of proteins per mRNA
transcript. To model the system, we state variables as x = [X], y = [X2], d = [D], u = [DX2], v =
[DX∗

2], and z = [DX2X2], where [.] denotes concentration.
The evolution of the concentration of the repressor x can then be described by

ẋ = −2k1x
2 + 2k−1y + nktp0u− kdx+ q (37)

Here, the concentration of RNA polymerase p0 is assumed to remain constant during time. The
parameter q is the basal rate of production of CI, i.e., the expression rate of the cI gene in the
absence of a transcription factor. Because the reactions in (36) are fast, y, u, and d have algebraic
expressions in terms of x. We further use the fact that total amount of DNA promoter sites is
constant at a value dT to derive an expression of d in terms of x. The resulting one-dimensional
model for x is then given by

ẋ =
nktp0dtK1K2x

2

1 + 2K1K2x2 + 5K2
1K

2
2x

4
− kdx+ q (38)

34

Figure 4: Switching between equilibria in the λ system caused by noise

To reduce the size of the parameter space, we eliminate two of the parameters in (38) by rescaling the
repressor concentration x and time. To this end, we define the dimensionless variables x̃ = x

√
K1K2

and t̃ = t(q
√
K1K2). On substitution into (38) we obtain

ẋ =
αx2

1 + 2x2 + 5x4
− γx+ 1 (39)

where the tildes have been suppressed, and we have defined α = nktp0dT /q and γ = kd/(q
√
K1K2).

For this equation, there are two types of behavior, depending on the choice of the parameters
α and γ. As the parameters vary, the number of equilibria in the system changes from 1 to 3 and
then back to 1. When there is only one stable equilibrium and all concentrations evolve to that
equilibrium. When there are 3 equilibria, two of which are stable and the other unstable. Therefore,
the asymptotic behavior of the system is dependent on the initial condition. Such a behavior is
known us bistable, and appears frequently in many areas of engineering and physics.

Stochastic Analysis of the One-Dimensional SDE Formulation of Phage λ Although a
given trajectory of the phage λ system will converge to one of the two equilibria at steady-state, it
might leave this steady state and switch to the other one under the action of the biochemical noise
affecting the many reactions occurring in the system. We show this behavior in Figure 4 where a
realization based on the stochastic simulation algorithm of Gillespie is shown. In this section, we
are concerned with the characterization of the statistics of such switching events.

However, here we consider a Langevin SDE formulation of the λ-phage system. To do that,
we start by incorporating additive noise in the deterministic rate equation of (39). If we take the
dynamical variable x to represent the repressor number within a colony of cells, we can crudely
think of an additive white noise term as a randomly varying external field acting on the biochemical
reactions, hence accounting for the impact of the environment on the system. The resulting SDE
is given by

dx(t) = f(x)dt+ σdξ(t) (40)

where f(x) is the right-hand side of (39), ξ(t) is a Wiener process, and σ is a scalar. The presence
of this noise source poses new questions. For example, while in the deterministic description

35

2

2 4
50 - 15 1 ()

1 2 5
x

dx x dt d t
x x

!

= + + + +

*
1
*
2
*
3

Equilibria:
 0.560 (stable)
 0.098 (stable)
0.255 (unstable)

x

x

x

=

=

=

0 0.098 0.255 0.560

0.04 2r

{ }
{ }
{ }

2 2

2 2
0

| (0.098) 0.02 0

| (0.56) 0

| (1) 0

uX x R x

X x R x r

X x R x x

= " # # $

= " # # $

= " # $

1

Figure 5: Setup for computing the bound of the probability of false switching because of noise, for
system (40).

trajectories that reach either steady state come to rest there, in the stochastic case they never do
so because of noise. One can then ask whether there is a large probability of noise-induced switching
between equilibria within a given time frame, then describe its correlation with the noise intensity
affecting the system. These quantities can be computed through the exact analytical solution of the
SDE. However, when such solution cannot be computed explicitly as it is often the case, statistics
determined from extensive simulations are usually used. Alternatively here, we propose that the
sum of squares and SOSTOOLS machinery can be used as an efficient algorithmic method for such
investigations. We specifically illustrate this point by investigating the situation where the model
in (39) is started close to one of the two stable equilibria, and an estimate of the the probability of
transition to a region around the other stable equilibrium is computed. We will refer to this as the
bound on the probability of false switching caused by noise. For example, the setup for this problem
is shown in Figure 5 where we are interested in whether an initial trajectory from a point inside a
set of variable size r centered at the high equilibrium

X0 = {x ∈ R|(x− 0.56)2 − r2 ≤ 0} (41)

can ever reach a region around the other equilibrium,

Xu = {x ∈ R|(x− 0.098)2 − 0.022 ≤ 0}. (42)

when the total state-space of interest is

X = {x ∈ R|x(x− 1) ≤ 0}. (43)

This question, however, is ill-posed if the time horizon over which this probability is to be
computed is not bounded. Indeed, the way the noise enters in (40) means that if the state-space X
is large enough (say the whole real line) and the time is infinite, the probability of reaching every
point in the state-space should be 1.

A more meaningful biological question that our methods can answer is the following. Starting
from a region around one equilibrium, estimate the probability of reaching the other equilibrium
in a finite time horizon, say from t = 0 to 2 non-dimensional time units. Time is now another
variable in the system, and instead of constructing a time-independent B(x), we construct a time-
dependent B(x, t) to estimate this probability. We also increase the state-space adequately, so

36

Figure 6: Probability of false switching from the high steady to the low steady state as a function
of time under the influence of noise. The blue line depicts probabilities computed through the use
of barrier functions while the green line depicts the probabilities computed from 2000 realizations
obtained from direct simulations of the SDE.

that the “escape” probability is reduced significantly. As σ is varied in this modified problem, our
methodology gives the following results, which we compare with probability estimates obtained by
direct simulations of the stochastic differential equation in (40). When σ = 1, 98% of the simulations
enter the region around the other equilibrium, whereas our methodology gives an upper bound of
β = 0.99. When σ = 0.5, direct simulations gives 0.57, and our methodology returns β = 0.6.
We see now that the expected result is obtained; as σ is decreased, the probability of reaching the
other equilibrium (false switching) is decreased, and the upper bounds are close to the probability
estimates obtained by direct simulations.

Using the same methodology, we can also address the dependence of the switching probability
from one steady-state to the other on time and for a given noise intensity. We show the results of our
computations in Figure 6 where the upper bound on this probability is plotted as a function of time,
along with estimates of the probability, obtained from simulations of the SDE. It can be seen that
the two plots are satisfactorily close to each other. However, while we had to run a large number of
simulations (of order a thousand) to compute estimates of the probability, with the computational
effort increasing as the simulation time interval was increased, the barrier technique generated
good upper bounds in a fraction of time and each run had the same computational burden. This
will become increasingly important as we consider larger systems where exact simulations become
prohibitively slow. In general, probabilities computed using our barrier methods are conservative
bounds on the true probabilities. However, as illustrated in our example, these bounds can yield
accurate results.

The same techniques can again be used to compute probability lower bounds. For example,
Figure 7 shows the upper and lower bounds for the probability of escaping a neighborhood of the
high equilibrium in a finite time horizon as the noise intensity increases. It is interesting to note
that the probability goes sharply from 0 to 1 (indicating a phase transition) as the noise is increased,
and that the technique we propose can be used to estimate the critical noise intensity necessary for
escaping the given region around the equilibrium.

37

Figure 7: Upper and lower bounds on probability of escaping a neighborhood of the high equilib-
rium, computed using the Barrier technique.

The λ-Phage Two-Dimensional Model The model we have presented in the previous section
is particularly simple. In order to demonstrate the capabilities of the methodology in higher
dimensional systems, we propose to adopt a 2-D description of the λ system while giving a more
plausible description of the biochemical noise affecting the system. In order to get a rich model
description, we start by introducing a crucial step that was eliminated from the model to reduce it
to a 1-D description: translation. Recall that in the previous model, the production of X follows

DX2 + P
kt−→ DX2 + P + nX, X

kd−→ A

This means that X is produced in a single step process, then degraded. More realistically, it should
be produced through a two step process of transcription first, then translation. The resulting
description is

DX2 + P
kt−→ DX2 + P +M, M

kT−→M + nX,

M
kd−→ B, X

km−→ A (44)

and the resulting 2-D model is

ṁ = ktp0u− kdm+ q

ẋ = nkTm− kmx+ 2k−1y − 2k1x
2

Proceeding as before, we eliminate u from the equation to get:

ṁ =
ktp0dtK1K2x

2

1 + 2K1K2x2 + 5K2
1K

2
2x

4
− kdm+ q

ẋ = nkTm− kmx

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 m

x

2D bistable system

Figure 8: Phase plane for system (45–46). Arrows denote the vector field, solid lines are trajectories
from initial conditions denoted by ‘*’. Equilibria are shown by ‘+’ (stable) and ‘�’ (unstable). The
solid thick line is a separatix - it divides the phase plane in two, so that if the deterministic system
is initialized in one region then all trajectories flow towards one equilibrium, whereas if the system
is initialized in the other all trajectories flow to the other equilibrium.

Carrying the change of variables x̃ = x
√
K1K2, m̃ = m

√
K1K2, and τ = t(q

√
K1K2), we get

˙̃m =
αx̃2

1 + 2x̃2 + 5x̃4
− γm̃+ 1

˙̃x =
nkT

q
√
K1K2

m̃− km

q
√
K1K2

x̃

where α = ktp0dt

q and γ = kd

q
√

K1K2
. Following [46], we fix the numerical values of the parameters in

the system so as to get the following model

˙̃m =
50x̃2

1 + 2x̃2 + 5x̃4
− 150m̃+ 1 (45)

˙̃x = 10m̃− x̃ (46)

Note that in the phase plane, the deterministic part of this system results in three equilibria
as before, two of which are stable and the other unstable. The phase-plane of system (45–46) is
shown in Figure 8.

Rather than introducing additive noise in an ad-hoc manner to this 2-D system, we consider
more biologically plausible sources of noise that originate from intrinsic biochemical fluctuations.
However, starting from a detailed account of the noise that stems from all the elementary chemical
reactions in the network, we carry out two approximations that generate an SDE with multiplicative
noise as the system’s stochastic description.

For the system under study, the elementary (birth and death) chemical reactions are given
by (36) and (44). Each of these elementary reaction steps is characterized by its probability of
occurrence. This probability is in turn captured by the so called propensity functions, which are
simple functions of the rate constants and concentration of the reactants. The description based on

39

the elementary reactions and their probability of occurrence generates a continuous-time, discrete-
state Markov Chain that is often studied through Monte-Carlo simulations.

Chemical reactions, including the example that we are considering, often occur at drastically
different time scales, therefore making analysis and simulation of the Markov chain description of
the processes involved computationally challenging. To circumvent this stiffness, it is common to
replace the elementary reaction with the so-called elementary-complex reactions. One elementary-
complex reaction is formed by an aggregation of elementary reactions. Therefore, the probability
of occurrence of an elementary-complex reaction is an involved function of the state of the system.
One method to compute these probabilities is to use Michaelis-Menten and various other well
established approximations for the deterministic description of the system, then use the resulting
expressions to define the complex reactions and their propensities [99]. For the example considered
here, this will translate into replacing the elementary reactions in (36) and (44), by complex birth
and death reactions for m̃ and x̃ whose propensities are taken from the differential equations in
(45) and (46).

With these elementary-complex propensities generating a reduced order stochastic description
of the λ-phage system, we carry out a diffusion approximation that transforms the Markov-chain
type of description of these molecular reactions into a stochastic differential equation. The premises
of this procedure were recently re-investigated in the work of Gillespie [42], to which we refer the
reader for details. Here, we only state the final result. If ai(X) are the propensity functions that
determine transition probabilities, A is a column vector formed by these propensities, and S is the
stoichiometry matrix, then the deterministic description of the system (as in (45) and (46)) is given
by

dX

dt
= SA(X)

and the SDE generated by the diffusion approximation is given by

dX = SA(X)dt+ S
√

diag(A(X))dξ (47)

With the elementary to elementary-complex and diffusion approximations in place, the final
CLE describing the 2-D λ system becomes

dm̃ =
(

50x̃2

1 + 2x̃2 + 5x̃4
− 150m̃+ 1

)
dt+

√
50x̃2

q(1 + 2x̃2 + 5x̃4)
dξ1 +

√
150m̃
q

dξ2 +
dξ3√
q

dx̃ = (10m̃− x̃) dt+

√
10m̃
q
dξ4 +

√
x̃

q
dξ5 (48)

For this system, we will again compute a bound on the probability of reaching one of the steady-
states from the other one during a fixed time. In particular, we consider whether from an initial
region around the low equilibrium defined by

X0 = {x ∈ R|(x− 0.098)2 + (10m− 0.098)2 − 0.022 ≤ 0} (49)

one can reach a region around the high equilibrium defined by

Xu = {x ∈ R|(x− 0.560)2 + (10m− 0.560)2 − 0.052 ≤ 0}, (50)

in a certain time span, say t ∈ [0, 10] for different noise intensities. In this case, and for a fixed
structure of the system, different noise intensities can be achieved by changing the number of

40

101 102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Molecules

Pr
ob

ab
ilit

y
up

pe
r b

ou
nd

Upper bound on probability of false switching for t ! [0,10]

Figure 9: Upper bound on switching probability from the higher equilibrium as a function of the
number of molecules in the system

molecules in the system. We therefore define x̂ = Nx for equation (47). N is commonly called
the system size. This change of variables scales the number of molecules without modifying the
dynamics of the deterministic system. However, the associated noise intensity grows as the square
root of N . This in agreement with the common intuition (and can also be directly seen from
equation (47)) that as the number of molecules in a system increases, the noise strength affecting
it, normalized by the mean, decreases.

With N as our varying noise intensity, we attempt to answer the false switching question. We
construct certificates B(x, t) algorithmically, again using the methodology described earlier. Note
that the non-polynomial nature of the vector field (the way noise affects the system is through
the square root of some polynomial) does not cause any problems, as these terms appear squared
in the expressions to be tested — see condition (26) in Theorem 11. The upper bound on this
probability as function of N is given in Figure 9. Notice the expected fact that as N increase,
therefore yielding lower noise affecting the system, the probability of false switching decreases. As
in the previous case, this result was obtained without time consuming computations and was not
based on numerous simulations of the corresponding SDE.

3.1.3 Model Validation/Invalidation for the G-Protein Signaling in Yeast

Background and General Framework Let u ∈ R, y ∈ R denote the input and output of a
biological process, and p ∈ Rn be the vector of parameters. A model M of the process captures the
relation between input and output as y = M(u, p). Often, the modelM arises from systems of ODEs
of the form ẋ = f(x, u, p), x(0) = x0, y = g(x, u, p), where x ∈ Rnx are the state variables (e.g.,
concentration of species). An experiment provides a dataset (ν, d, δ, ε), consists of input and output
measurements ν and d, and their uncertainties δ and ε. Suppose prior knowledge on parameters
can be expressed by L polynomials: H = {p ∈ Rn : gl(p) ≤ 0, i = 1, · · · , L}. The set of parameters
consistent with m experiments is P = {p ∈ H : |M(ui, p)− di| ≤ εi, |ui − νi| ≤ δi, i = 1, . . . ,m}.
We want to either prove P is empty or describe P as precisely as we can. We start with searching

41

for an emptiness certificate using the barrier function methodology, as discussed later. If not empty,
P can be described by solutions to a series of optimization problems of the form

minimize Φ(p)
subject to p ∈ P, (51)

where we choose Φ(p) depending on the aspect of P we are interested in. In general we cannot
express M(u, p) in closed form and have no way of solving or relaxing these optimization problems.
However, we can use SOS methods if we first approximate M(u, p) by a polynomial S(u, p) in the
region of interest. S is referred to as the surrogate model [35,40]. The difference between M and S
can be made arbitrarily small if the order of S is high enough. Different types of surrogate models
can be considered; one is to use response surface methods to generate a quadratic surrogate model
as in [40]. If we assume the approximation error is bounded on the feasible parameter set, i.e.
|M(ui, p)− S(ui, p)| ≤ ei, ∀p ∈ P, |ui − νi| ≤ δi, i = 1, . . . ,m, then we can construct two sets PI

and PO, which are sets of parameters consistent with output data within margins εi−ei and εi +ei,
respectively. Since PI ⊂ P ⊂ PO, PO = ∅ is a sufficient condition for inconsistency between model
and data, which can be checked using SOS methods. If P 6= ∅, we can use SOS to compute upper
bounds on Φ∗, the optimal value of problem (51), as will be shown in the examples.

G-protein Model Consider the following model for the heterotrimeric G-protein cycle in yeast
mediating the response to mating pheromone. Model includes the following processes: (1) the
binding kinetics of ligand (L) to receptor (R); (2) the synthesis and degradation of receptor; (3)
activation of G-protein (G) by active receptor (RL); (4) deactivation of Gα-GTP (Gα) catalyzed
by the RGS protein Sst2p; and (5) reassociation of the heterotrimer. For several of the reac-
tions, the nominal value for the rate constants or parameters have been measured directly: (k1 =
106mM−1s−1, k2 = 10−2s−1, k3 = 4×10−4s−1, k4 = 4×10−3s−1, k5 = 4mMs−1, Gt = 104mM).
For other reactions, these values were inferred from input-output data (k6 = 10−5mM−1s−1 and
k7 = 0.1s−1), and for some they were based on estimates in the literature (k8 = 1mM−1s−1). Thus
we have the following ODE model in which the input is the pheromone ligand and the output is
the (normalized) level of free Gβγ (Gbg).

ẋ1 = −k1x1u+ k2x2 − k3x1 + k5

ẋ2 = k1x1u− k2x2 − k4x2

ẋ3 = −k6x2x3 + k8(Gt − x3 − x4)(Gt − x3)
ẋ4 = k6x2x3 − k7x4

y = (Gt − x3)/Gt,

(52)

where x1=[R], x2=[RL], x3=[G], x4=[Gα], u=[L], y=[Gβγ]/Gt, and Gt is the total amount of G-
protein. The in-vivo dynamics and regulation of this cycle in yeast has been measured using fluores-
cence resonance energy transfer (FRET) [131]; we use the data from dose-response experiments: u =
[1, 2, 5, 10, 20, 50, 100, 1000] (in nM), and y = [0.083, 0.122, 0.240, 0.352, 0.384, 0.397, 0.400, 0.397],
where step input of size u is applied and output y is measured at t = 60s.

Invalidation Using Barrier Certificates We discuss the problem of invalidating the ODE
model (52) with experimental data, using barrier certificates. Barrier certificates are discussed in
section (3.1.1), where it is also noted that the search for a barrier can be cast as an SOS program.
We applied this method to the ODE and data described above. One result is that we can invalidate
the model using data from only the first experiment u = 10−9, y = 0.038, for relatively small
uncertainty in the parameters and output. Specifically, we allowed for 4% uncertainty in k6 and

42

k7, the two parameters we are more uncertain about, and 5% uncertainty in the measured output,
while fixing all other parameters and the input. Other a priori constraints on the states, typically
coming from experiments, can also be handled. Here we used simulation to estimate bounds on the
states, and included those constraints. We were then able to find a barrier certificate B(x, t, p), a
polynomial of degree 2 in x, 2 in t, and 1 in p, that invalidates the model with this experiment.

In this approach, there is no need to calculate surrogate models and deal with the extra error
introduced by them, making this method more rigorous and less conservative. Also, uncertainty in
the initial and final states and state constraints can be explicitly handled. The main disadvantage
of the approach is the computational cost. Even though the size of the SOS program (for a fixed-
degree barrier) is polynomial in the number of parameters, it grows very fast with the number of
input/output data points. Currently, the only known way to include the data requires augmenting
the state space, adding nx states to the state space for each additional data point. This makes
the method impractical for large amounts of data, and emphasizes the need for a different, more
scalable method of handling data. Our research effort will attempt to address this issue.

Invalidation with Surrogate Models Quadratic surrogate models described before are used to
prove that the outer set PO is empty. This implies the emptiness of P , hence invalidating the original
model M . The uncertainty in data and parameters are captured by I polynomials Ψi(p, u). The
set PO is described as PO = {p ∈ Rn : Ψi(p, u) ≤ 0, i = 1, · · · , I}. Using SOS methods described
earlier, if we can find nonnegative polynomials λ’s of p and u such that

∑I
i=1 λiΨi(p, u) > 0, for

all values of p and u, then PO is proven empty. These λ’s constitute an invalidation certificate (in
the special case that all constraints are quadratic and the multipliers are nonnegative constants,
this condition is equivalent to the S-procedure). The values of these multipliers provide important
information: constraints that have zero multipliers do not contribute to invalidating the model.

In the G-protein model, when the uncertainty is 10% on experiment data, 50% for k6, k7 and
4% for all other parameters, model (52) is invalidated by the experiment data given earlier with
constant multipliers. Nonzero multipliers identify three data points (1, 7 and 8) that invalidate the
model. In fact, model (52) is invalidated by only experiment data 1 and 8. The nonzero multipliers
also point out directional information: the output measurement in the first experiment was too
high and the eighth too low.

Descriptions of Feasible Parameter Space We have also used surrogate models to describe
the multi-dimensional feasible parameter space. The simplest representation is to calculate upper
and lower bounds on each parameter. Given that the measurement data invalidated the model, to
study the feasible parameter space we used simulated data as described in [129]. We found that
the simulated data do not add information to prior knowledge on ranges of individual parameters.
This highlights the limitations of bounding parameter individually, and the importance of capturing
parameter correlations. For example, the ratio between the G-protein activation rate k6 and the
deactivation rate k7 is expected to be close to a constant since it determines the level of active
G-protein. Using the simulated data and the prior bounds, we identified two parallel lines that
bound the 2-dimensional feasible set from outside, as shown in Figure 10. The slopes and offsets of
the lines were set as free variables in the optimization problem, and the vertical distance between
the two lines was minimized. The feasible parameter set P is a subset of the shaded region.

In figure 11, the optimization is repeated as the slopes of the lines are varied over a range and
vertical distance is minimized. This results in a set of hyperplanes bounding the feasible set. Such
bounds can help describe the feasible parameter region, even in higher dimensions where they are
not easy to visualize.

43

Figure 10: Shaded region includes the feasible parameter space allowed by data.

Figure 11: Lines with varying slopes bound the feasible parameter region.

3.1.4 Optimization-Based Methods for System Verification

A body of techniques based on convex optimization and sum of squares programming has been
developed for verification of a large class of dynamical systems, including those with nonlinear
dynamics, uncertainties, hybrid (mixed discrete-continuous) dynamics, stochasticity, and time-
delay [85–87, 94, 95]. These techniques verify temporal properties such as safety (e.g., something
bad never happens), reachability (e.g., something good can happen), eventuality/liveness (e.g.,
something good will surely happen), and their simple combinations, using certain functions of
states called barrier certificates and density functions [85,95]. The use of convex optimization gives
several advantages on both the theoretical and computational sides. First, there is no need to
propagate sets of states, and therefore the methods can be easily applied to a very large class of
systems. This is even true for systems with infinite-dimensional state space (such as time-delay
systems), whose verification had not been considered before in the literature. Not only that, convex
duality can also be exploited to obtain converse statements. Finally, the computation of proofs can
be performed using sum of squares programming, when the system has a polynomial description.

For a simple illustration, consider a continuous system ẋ = f(x, d) where x is the state of the

44

system taking its value in the state space X and d is a disturbance input taking its value in D. In
addition, consider X0 ⊂ X as the set of possible initial states, and Xu ⊂ X as the set of unsafe
states. Suppose there exists a barrier certificate, i.e., a differentiable function B : X → R satisfying
the inequalities

B(x) ≤ 0 ∀x ∈ X0, (53)
B(x) > 0 ∀x ∈ Xu, (54)
∂B

∂x
(x)f(x, d) ≤ 0 ∀x ∈ X ×D. (55)

Then it is easy to see that the safety property holds, i.e., that for all possible initial state x0 ∈ X0

and for all possible disturbance input there exists no trajectory of the system that goes from the
initial set to the unsafe set. Systems with hybrid dynamics can be treated in an analogous manner.
Here we should ask that during the discrete transition the value of B(x) also satisfies certain
non-increasing conditions, similar to what we have in (55).

It is obvious that simulation is of limited use to address the verification of safety property stated
above. Since the state of the system is uncountable, verifying by simulation that the property holds
in all cases is never exact, simply because it is impossible to test all system behaviors. In fact,
simulation alone may fail to uncover the existence of bad behaviors. Using barrier certificates
and density functions to prove safety, reachability, and eventuality is analogous to using Lyapunov
functions to prove stability. It eliminates the needs to run simulations, to explicitly compute the
flow of the system, or to propagate sets of states.

For stochastic systems, such as those described by stochastic differential equations, safety ver-
ification can also be handled by computing an appropriate barrier certificate which upper-bounds
the probability of reaching the unsafe set [87]. In this case, a barrier certificate B : X → R which
generates a stochastic process b(t) , B(x(t)) that is a supermartingale, i.e., whose evolution along
time is non-increasing on the average, is used. We also ask that the value of the barrier certificate
at the initial states be lower than its value at the unsafe states. The probability of reaching the
unsafe region can then bounded from above using a Chebyshev-like inequality for supermartingales.

There are other classes of systems that can be handled using this methodology. One example
is given by time-delay systems. For verification of a time-delay system, a functional of states is
used as a barrier certificate [86]. The forms of the functionals resemble the Lyapunov-Razumikhin
functions or the Lyapunov-Krasovskii functionals used in stability analysis of time-delay systems.
In [86], a hierarchy of functional structures is proposed to prove safety with decreasing levels of
conservatism.

The conditions that must be satisfied by barrier certificates and density functions are formu-
lated as convex programming problems. In addition to benefits in terms of computation, the duality
structure inherent because of their formulation as convex programs also gives theoretical advan-
tages [94, 95]. For example, the dual of safety verification, i.e., reachability verification, concerns
proving the existence of a trajectory starting from the initial set that reaches another given set.
Using insights from the linear programming duality appearing in the discrete shortest path prob-
lem, it is shown in [95] that reachability of continuous systems can also be verified through convex
programming. Several convex programs for verifying safety and reachability, as well as other tem-
poral properties such as eventuality, avoidance, and their combinations are formulated. As another
example, a completeness statement in safety verification using barrier certificates is obtained by
exploiting the strong duality between safety verification and reachability verification [94], stating
that under reasonable technical conditions, the existence of a barrier certificate satisfying (53)–(55)
is both sufficient and necessary for safety.

45

For systems and sets whose descriptions are in terms of polynomials, sum of squares program-
ming described in Section 2.1 provides a hierarchy of scalable algorithmic methods for computing
barrier certificates and density functions, where at each level the computational cost grows poly-
nomially with respect to the system size. The computation can be performed efficiently using
semidefinite programming, for example using the software SOSTOOLS. Because of the possibility
to use sum of squares programming for computing barrier certificates and density functions, the
methodology seems to be more scalable than many other existing methods that can handle nonlin-
ear continuous and hybrid systems. Successful application of the method for verifying the safety
property of a NASA life support system, which is a nonlinear hybrid systems with 6 discrete modes
and 10 continuous states, has been reported in [43].

3.1.5 Stochastic Simulation

Our goal has been the development of a multiscale computational framework for the numerical
simulation of chemically reacting systems, where each reaction will be treated at the appropri-
ate scale, accounting for both stochastics and stiffness. Substantial progress was made in FY04.
In microscopic systems formed by living cells, small numbers of reactant molecules can result in
dynamical behavior that is discrete and stochastic rather than continuous and deterministic. In
simulating and analyzing such behavior it is essential to employ methods that directly take into
account the underlying discrete stochastic nature of the molecular events. This leads to an accurate
description of the system that in many important cases is impossible to obtain through determinis-
tic continuous modeling (e.g. ODEs). Gillespie’s Stochastic Simulation Algorithm (SSA) has been
widely used to treat these problems. However as a procedure that simulates every reaction event,
it is prohibitively inefficient for most realistic problems. Our goal has been the development of a
multiscale computational framework for the numerical simulation of chemically reacting systems,
where each reaction will be treated at the appropriate scale. The framework is based on a sequence
of approximations ranging from SSA at the smallest scale, through a “birth-death” Markov process
approximation that is currently in progress, Gillespie’s recently-developed tau-leaping approxima-
tion, a continuous stochastic differential equation (SDE) approximation, and finally to the familiar
reaction rate equations (ODEs) at the coarsest scales. The Petzold-Gillespie collaboration has been
very productive in FY04 in pursuing these goals. Listed below are papers issuing from this collab-
oration which were either published, accepted for publication, or submitted for publication during
this period.

1. “Improved leap-size selection for accelerated stochastic simulation” by D. Gillespie and L.
Petzold, published in J. Chem. Phys. 116:8229-8234 (Oct 2003). This paper developed a
method for predicting the changes in the propensity functions during a finite time step that
is more accurate than the method used in Gillespie’s original tau-leaping paper [J. Chem.
Phys. 115:1716, 2001]. This new method enables us to choose the size of the time step in a
way that results in a reduced simulation time for a given level of accuracy.

2. “Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method” by M.
Rathinam, L. Petzold, Y. Cao, and D. Gillespie, published in J. Chem. Phys. 119:12784-12794
(Dec 2003). This paper examined the way in which “dynamical stiffness”, which is well known
in the context of deterministic differential equations, manifests itself in a stochastic context.
Stiffness is the presence in the system of a wide range of dynamical modes, the fastest of which
is stable. The paper shows that the original “explicit” tau-leaping procedure of Gillespie is
severely limited in step-size when stiffness is present (a very common circumstance). The
paper then proposes an “implicit” version of tau-leaping, and shows that for stiff systems

46

implicit tau-leaping can take significantly longer steps for a given level of accuracy than
explicit tau-leaping can. The paper also shows that stiffness manifests itself more prominently
in stochastic systems than in deterministic systems: the natural fluctuations keep moving the
system off of the “slow manifold” and the stiffness keeps pulling the system back onto that
manifold, resulting in an enhanced fluctuation signature.

3. “Efficient formulation of the stochastic simulation algorithm for chemically reacting systems”
by Y. Cao, H. Li, and L. Petzold, accepted for publication by J. Chem. Phys. This paper
develops a new way of implementing Gillespie’s original “direct method” of doing stochastic
simulations, which is as fast or faster than the “next reaction method” of Gibson and Bruck
[J. Phys. Chem A 104:1876, 2000]. The essence of the method is to dynamically re-index the
reaction channels so that those with larger propensity functions have smaller indices. This
reduces the average time it takes for the algorithm to “look up” the identity of the next
reaction that occurs. ¡/p¿

4. “Stochastic chemical kinetics” by D. Gillespie. Accepted for publication later this year as
a chapter for a forthcoming Handbook for Materials Modeling edited by H. Metiu of UCSB
and S. Yip of MIT. This offering is a concise but detailed tutorial on stochastic chemical
kinetics. Gillespie this year gave an abbreviated version of this tutorial to the DARPA
BioCOMP PI meeting in Adelphi MD, and later gave longer versions to three special seminars
at MIT, UMBC, and MathWorks. MathWorks is interested in incorporating our simulation
schemes into their popular commercial software product MatLab, so this represents technology
transfer.

5. “Consistency and stability of tau-leaping schemes for chemical reaction systems” by M.
Rathanam, L. Petzold, Y. Cao, and D. Gillespie. Submitted to SIAM Multiscale Model-
ing and Simulation. This paper develops a theory of local errors (single-step errors) for
explicit and implicit tau-leaping. The results establish that both tau-leaping methods are
first-order consistent. The local error formulas derived in this paper could serve as a basis for
future stepsize control techniques. The paper also shows that, in the special case of systems
with linear propensity functions, both tau-leaping methods are first-order convergent in all
moments. Finally, the paper shows that the implicit tau-leaping method (unlike the explicit
tau-leaping method) is unconditionally stable in the mean for stable systems.

6. “The slow-scale stochastic simulation algorithm” by Y. Cao, D. Gillespie, and L. Petzold,
submitted to J. Chem. Phys. This paper introduces what we believe is a very promising
approach to the “multiscale problem” in chemical kinetics. That problem is the fact that
reactions in real chemical systems often take place on vastly different time scales, with “fast”
reactions firing much more frequently than “slow” ones. Although the fast reactions are
usually much less important than the slow ones, the exact stochastic simulation algorithm
(SSA) necessarily spends most of its time simulating the fast reactions. Is there a way to
skip over the unimportant fast reactions, and directly simulate only the important slow ones?
This paper gives an affirmative answer to that question, an answer that we believe is more
complete and easier to understand and use than related approaches proposed by E. Haseltine
and J. Rawlings [J. Chem. Phys. 117:6959, 2002] and C. Rao and A. Arkin [J. Chem. Phys.
118:4999), 2003]. The key is a new theorem, formulated and proved in this paper, which shows
how to construct a modified form of the propensity function of each slow reaction. The ability
to do this leads directly to a way of stochastically stepping from one slow reaction to the next,
an algorithm that we have named the “slow-scale SSA”. The ssSSA is shown to work well

47

for two simple model stiff systems, giving real-time simulation speedups of over 1000 with no
significant loss of simulation accuracy. In the course of this work, a theoretical explanation
was found (in the proof of our theorem) for a curious “low bandpass filtering effect” that
was earlier noted by Doyle, Khammash, and coworkers in the heat-shock response mechanism
of the E. coli bacterium. Future work on the ssSSA will be aimed at developing ways of
applying it to more complicated systems. The ssSSA is far superior to explicit tau-leaping
for stiff systems, and we believe that future work will reveal an enlightening connection to
implicit tau-leaping.

7. “Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption
for chemically reacting systems” by Y. Cao, D. Gillespie, and L. Petzold. Submitted to J.
Computational Phys. This paper describes an extended version of the theory outlined in #6
that emphasizes the close connection to the traditional “partial equilibrium” approximation in
deterministic chemical kinetics. The technique of “down-shifting”, first reported in the paper
of #2, is shown to be useful for “relaxing” the fast variables to their asymptotic stationary
distribution. The MSSA technique is applied to several model systems, including a modeling
of the heat shock response mechanism in E. coli that involves 28 species and 61 reactions.
Simulation time speed ups over the exact SSA of nearly 2 orders of magnitude are achieved
without significant loss of accuracy.

8. “Trapezoidal tau-leaping formula for the stochastic simulation of chemically reacting systems”
by Y. Cao and L. Petzold. Being written. This paper introduces a new leaping formula,
which reduces to the trapezoidal rule in the deterministic regime. Numerical experiments
demonstrate that this new formula has better accuracy and stability than both the explicit
and implicit tau formulas.

9. “The numerical stability of leaping methods for stochastic simulation of chemically reacting
systems” by Y. Cao, L. Petzold, M. Rathinam, and D. Gillespie. Being written. This paper
discusses the consequences of the stiffness for stochastic simulation using leaping methods.
The numerical stability of three tau-leaping formulas (explicit, implicit, and trapezoidal) are
discussed and compared.

10. “Accuracy limitations and the measurement of errors in the stochastic simulation of chemi-
cally reacting systems”, Y. Cao and L. Petzold. Being written. In stochastic simulation using
non-exact methods, a common problem is to determine the accuracy of a proposed stepping
formula. This paper discusses how to measure the error in distribution. “Kolmogorov dis-
tance” and “histogram distance” are presented and compared. Some accuracy bounds are
given for these measurements. These bounds quantitatively give the “round-off” error in
stochastic simulations, which we believe will prove to be a widely useful concept. Finally
it should be noted that Gillespie is serving as an auxiliary advisor to a student of Petzold,
Sotiria Lampoudi, who has just begun to look at some problems associated with relaxing the
“well-stirred” assumption that underlies the conventional chemical master equation and SSA.
The specific question being examined by Lampoudi is which of two seemingly well founded
but conflicting expressions for the diffusive transport coefficient (between two contiguous spa-
tially homogeneous system subvolumes) is really correct. This is a first step in addressing the
complicated problem of simulating systems which are not spatially homogeneous.

48

3.1.6 Sum of Squares (SOS) Framework and SOSTOOLS

Substantial progress was made in FY04 on model (in)validation from data, hybrid system verifica-
tion with applications to analysis of gene regulatory networks, overcoming intractability of coNP
hard problems by exploiting robustness, and in applications to specific biological problems, but
particularly beat shock in E. Coli. The latter is in collaboration with Mustafa Khammash (UCSB)
and Carol Gross (UCSF) and the experimental and modeling work is funded by NSF, but uses
SOSTOOLS capabilities partially developed with DARPA funding.

The aim is build on mathematics of systems engineering to create a coherent and complete
theoretical infrastructure proceeding from experimental data to modeling, analysis, inference, and
with tight feedback to experimentation and modeling throughout. Both data and modeling as-
sertions and questions must be described in a common framework that is biologically natural, yet
can be turned over to powerful algorithms for resolution. Is a model consistent with experimental
data, which may come from extremely heterogeneous sources? If so, is it robust to additional
perturbations that are plausible but untested? Are different models at multiple scales of resolution
consistent? What is the most promising experiment to refute a model? Put in natural terms (which
are typically nonlinear, nonequilibrium, uncertain, stochastic, hybrid and so on), such questions are
conventionally viewed as computationally intractable, and biologists have traditionally been forced
to translate into unnatural terms in order to use available algorithms. This is undesirable and now
potentially unnecessary.

Our new mathematics involves blending and augmenting tools from dynamical systems, con-
trol theory, and operator theory in such a way that natural biological questions can be recast as
statements about real semi-algebraic sets. Proving such statements is generally coNP-hard, but
real algebraic geometry, semi-definite programming, and duality theory from optimization provide
new methods to systematically exhaust coNP by searching for nested families of short proofs using
convex relaxations. This has been used to create systematic nested families of relaxations which
directly answer all of the above problems for classes of problems that appear to include biological
networks. Applications to a variety of “toy” biologically motivated problems have been used to test
the algorithms and several experimentally meaningful biological problems have successfully been
tackled as well. A crucial insight is that evolution favors high robustness to uncertain environments
and components, yet allows severe fragility to novel perturbations, and this “robust yet fragile”’
feature must be exploited explicitly in scalable algorithmic approaches. Substantial progress has
been made in doing this.

Specifically, the new modeling and inference framework we are developing need not handle
arbitrary problems of the type above (presumably worst-case intractable) but only that subset of
problems which are biologically meaningful. Biological organisms are highly constrained in that
they have not just evolved, but necessarily evolved in ways that are robust to uncertainties in their
environment and their component parts. These are extremely severe constraints, not present in
other sciences but essential in engineering, which emerge primarily at the network level in both
biology and engineering. These robustness constraints play a crucial if often hidden and implicit
role in the informal processes that biologists use to reason about their experiments and are central
in creating a scalable process of biological inference. A theoretical and software infrastructure
that does not explicitly exploit the highly structured, evolved, and “robust yet fragile” nature
of biological systems is hopelessly doomed to be overwhelmed by their sheer complexity. A key
insight is that high computational complexity implies the existence of hidden fragilities in the
original problem statements, models, or the data, that must be resolved either by refined modeling
or new experiments. Put simply, “complexity implies fragility” and robust systems can be tractably
modeled and understood, with the proper infrastructure. In our framework, lack of short proofs

49

or simple relaxations implies, by a generalization of duality, that there are inherent fragilities
of the type described above. In other words, “dual complexity implies primal fragility.” This
feedback does not imply that P=NP=coNP, which is unlikely, but that the inference problems
within coNP lacking short proofs can be traced to biologically meaningful flaws in models or data
for which resolution can then be systematically pursued. While all the implications of these results
have yet to be explored, it is already clear that these insights are essential for creating a scalable
computational infrastructure for systems biology.

There have been a large number of publications related to this work published or submitted in
FY04. The first is an application to a biological problem, and the rest are mathematical foundations
of relevance to biology

1. H. El-Samad, S. Prajna, A. Papachristodoulou, M. H. Khammash, and J. C. Doyle. “Model
Validation and Robust Stability Analysis of the Bacterial Heat Shock Response Using SOS-
TOOLS.” In Proceedings of the IEEE Conference on Decision and Control. Maui, HI. 2003.
The complexity inherent in gene regulatory network models, as well as their nonlinear nature
make them difficult to analyze or validate/invalidate using conventional tools. Combining
ideas from robust control theory, real algebraic geometry, optimization and semi-definite
programming, SOSTOOLS provides a promising framework to answer these robustness and
model validation questions algorithmically. We adopt these tools in the study of the heat
shock response in bacteria. For this purpose, we use a reduced order model of the bacterial
heat stress response. We study the robust stability properties of this system to parametric un-
certainty, and address the model validation/invalidation problem by proving the necessity for
the existence of certain feedback loops to reproduce the known time behavior of the system.

2. S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. “SOSTOOLS and its Control
Applications.” To appear in Positive Polynomials in Control. A. Garulli and D. Henrion
(eds.). Springer-Verlag. 2004. In this chapter we present SOSTOOLS, a third-party MAT-
LAB toolbox for formulating and solving sum of squares optimization problems. Sum of
squares optimization forms a basis for formulating convex relaxations to computationally
hard problems such as some that appear in systems and control. Currently, sum of squares
programs are solved by casting them as semidefinite programs, which can in turn be solved
using interior-point based numerical methods. SOSTOOLS helps this translation in such a
way that the underlying computations are abstracted from the user. Here we give a brief
description of the toolbox, its features and capabilities (with emphasis on the recently added
ones), as well as show how it can be applied to solving problems of interest in systems and
control.

3. A. Papachristodoulou and S. Prajna. “Analysis of Non-polynomial Systems using the Sum of
Squares Decomposition.” To appear in Positive Polynomials in Control. A. Garulli and D.
Henrion (eds.). Springer-Verlag. 2004. Recent advances in semidefinite programming along
with use of the sum of squares decomposition to check nonnegativity have paved the way
for efficient and algorithmic analysis of systems with polynomial vector fields. In this paper
we present a systematic methodology for analyzing the more general class of non-polynomial
vector fields, by recasting them into rational vector fields. The sum of squares decomposition
techniques can then be applied in conjunction with an extension of the Lyapunov stability
theorem to investigate the stability and other properties of the recasted systems, from which
properties of the original, non-polynomial systems can be inferred. This will be illustrated
by some examples from the mechanical and chemical engineering domains.

50

4. S. Prajna and A. Jadbabaie. “Safety Verification of Hybrid Systems using Barrier Certifi-
cates.” In Hybrid Systems: Computation and Control. R. Alur and G. J. Pappas (eds).
Springer–Verlag. 2004. This paper presents a novel methodology for safety verification of
hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe
region, the proposed method uses a function of state termed a barrier certificate. The zero
level set of a barrier certificate separates the unsafe region from all possible trajectories start-
ing from a given set of initial conditions, hence providing an exact proof of system safety. No
explicit computation of reachable sets is required in the construction of barrier certificates,
which makes nonlinearity, uncertainty, and constraints can be handled directly within this
framework. The method is also computationally tractable, since barrier certificates can be
constructed using the sum of squares decomposition and semidefinite programming. Some
examples are provided to illustrate the use of the method.

5. S. Prajna, A. Rantzer. “On Homogeneous Density Functions.” In Directions in Mathematical
Systems Theory and Optimization. A. Rantzer and C. I. Byrnes (eds). Springer–Verlag. 2003.
We consider homogeneous density functions for proving almost global attractivity of the zero
equilibrium in a homogeneous system. It is shown that the existence of such a function
is guaranteed when the equilibrium is asymptotically stable, or in the more general case,
when there exists a nonhomogeneous density function for the same system satisfying some
reasonable conditions. Results related to robustness under nonhomogenizing perturbations
are also presented.

6. A. Papachristodoulou and S. Prajna. “Nonlinear Systems Analysis using the Sum of Squares
Decomposition.” Submitted to IEEE Transactions on Automatic Control. 2004. The algo-
rithmic analysis of nonlinear systems has always been a challenging task. A methodology
based on the sum of squares decomposition of multivariate polynomials and semidefinite pro-
gramming has been proposed recently to efficiently construct Lyapunov functions for prov-
ing stability of nonlinear systems with polynomial vector fields. In this paper, we extend
the methodology to handle systems that evolve under equality, inequality and integral con-
straints. This allows analysis of systems described by differential algebraic equations (DAEs),
robustness analysis under parametric or dynamic uncertainty, and analysis of systems with
non-polynomial vector fields. We also show how input-output and other types of analysis can
be performed using the same methodology. The use of the proposed technique is illustrated
by various examples.

7. S. Prajna. “Barrier Certificates for Nonlinear Model Validation.” Submitted to Automatica.
2003. New methods for model validation of continuous-time nonlinear systems with uncertain
parameters are presented in this paper. The methods employ functions of state-parameter-
time, termed here as barrier certificates, whose existence proves that a model and a feasible
parameter set are inconsistent with some time-domain experimental data. A very large class
of models can be treated within this framework; this includes differential-algebraic models,
models with memoryless/dynamic uncertainties, and hybrid models. Construction of barrier
certificates can be performed by convex optimization, utilizing recent results on the sum of
squares decomposition of multivariate polynomials.

8. F. Wu and S. Prajna. “SOS-based Solution Approach to Polynomial LPV System Analysis
and Synthesis Problems.” Submitted to International Journal of Control. 2003. Based on
Sum-of-Squares (SOS) decomposition, we propose a new solution approach for polynomial
LPV system analysis and control synthesis problems. Instead of solving matrix variables

51

over positive cone, the SOS approach tries to find a suitable decomposition to verify the
positiveness of given polynomials. The complexity of the SOS-based numerical method is
polynomial of the problem size, and is computationally attractive. This approach also leads
to more accurate solutions to LPV systems than most existing relaxation methods. Several
examples have been used to demonstrate benefits of the SOS-based solution approach.

9. S. Prajna, A. Jadbabaie, and G. J. Pappas. “Stochastic Safety Verification using Barrier
Certificates.” To appear in Proceedings of the IEEE Conference on Decision and Control.
2004. We develop a new method for safety verification of stochastic systems based on functions
of states termed barrier certificates. Given a stochastic continuous or hybrid system, a set
of initial states, and a set of unsafe states, our method computes an upper bound on the
probability that a trajectory of the system reaches the unsafe set, a bound whose validity is
proven by the existence of a barrier certificate. Both the upper bound and its corresponding
barrier certificate can be computed using convex optimization, and hence the method is
computationally tractable.

10. H. Yazarel, S. Prajna, and G. J. Pappas. “SOS for Safety.” To appear in Proceedings of the
IEEE Conference on Decision and Control. 2004. One of the difficult problems for hybrid
systems is the safety verification problem which asks whether trajectories starting from a
set of initial states reach a set of an unsafe (final) set. Verification of continuous systems
remains one of the main obstacles in the safety verification of hybrid systems. In this paper,
by exploiting the structure of linear dynamical systems, we pose the exact safety verification
of linear systems with certain eigen-structure as emptiness of a set defined by polynomial
equalities and inequalities. Sum of squares (SOS) decomposition is then employed to check
emptiness of the set, which can effectively be computed by semidefinite programming.

11. S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. “SOSTOOLS: Control Ap-
plications and New Developments.” To appear in Proceedings of the IEEE Conference on
Computer Aided Control Systems Design. 2004. In this paper we describe recent devel-
opments and control applications of SOSTOOLS, a free third-party MATLAB toolbox for
formulating and solving sum of squares programs.

12. S. Prajna, A. Papachristodoulou, and F. Wu. “Nonlinear Control Synthesis by Sum of Squares
Optimization: A Lyapunov-based Approach.” In Proceedings of the Asian Control Confer-
ence. 2004. This paper addresses the state feedback control synthesis problems for nonlinear
systems, either without or with guaranteed cost or H∞ performance objectives. By repre-
senting the open-loop nonlinear systems in a state dependent linear-like form and considering
a special class of Lyapunov functions, sufficient conditions for the solutions to the above
problems can be formulated in terms of state dependent linear matrix inequalities. Semidef-
inite programming relaxations based on the sum of squares decomposition are then used to
efficiently solve such inequalities.

13. S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. “New Developments in Sum of
Squares Optimization and SOSTOOLS.” In Proceedings of the American Control Conference.
2004. We describe the latest additions to SOSTOOLS, a freely available MATLAB tool-
box for formulating and solving sum of squares programs. Among the many improvements,
there are native polynomial objects, structure-exploiting techniques for sparse and structured
polynomials, new customized functions, and support for alternative SDP solvers. We sketch
some of the theory behind the new improvements, and illustrate the new commands using
control-oriented examples.

52

14. F. Wu and S. Prajna. “A New Solution Approach to Polynomial LPV System Analysis
and Synthesis.” In Proceedings of the American Control Conference. 2004. Based on Sum-
of-Squares (SOS) decomposition, we propose a new solution approach for polynomial LPV
system analysis and control synthesis problems. Instead of solving matrix variables over
a positive definite cone, the SOS approach tries to find a suitable decomposition to verify
the positiveness of given polynomials. The complexity of the SOS-based numerical method
is polynomial of the problem size. This approach also leads to more accurate solutions to
LPV systems than most existing relaxation methods. Several examples have been used to
demonstrate benefits of the SOS-based solution approach.

15. S. Prajna. “Barrier Certificates for Nonlinear Model Validation.” In Proceedings of the IEEE
Conference on Decision and Control. Maui, HI. 2003. New methods for model validation
of continuous-time nonlinear systems with uncertain parameters are presented in this paper.
The methods employ functions of state-parameter-time, termed here as barrier certificates,
whose existence proves that a model and a feasible parameter set are inconsistent with some
time-domain experimental data. A very large class of models, including differential-algebraic
models, models with memoryless/dynamic uncertainties, and hybrid models, can be treated
within this framework. Construction of barrier certificates can be performed by convex opti-
mization, utilizing the sum of squares decomposition of multivariate polynomials.

16. S. Prajna. “POD Model Reduction with Stability Guarantee.” In Proceedings of the IEEE
Conference on Decision and Control. Maui, HI. 2003. Issues concerning stability of models
obtained from model reduction using the proper orthogonal decomposition (POD) are investi-
gated in this paper. A sufficient condition which guarantees preservation of stability is given,
and a stability-preserving POD model reduction scheme is proposed.

17. S. Prajna and A. Papachristodoulou. “Analysis of Switched and Hybrid Systems – Beyond
Piecewise Quadratic Methods.” In Proceedings of the American Control Conference. Denver,
CO. 2003. This paper presents a method for stability analysis of switched and hybrid sys-
tems using polynomial and piecewise polynomial Lyapunov functions. Computation of such
functions can be performed using convex optimization, based on the sum of squares decom-
position of multivariate polynomials. The analysis yields several improvements over previous
methods and opens up new possibilities, including the possibility of treating nonlinear vector
fields and/or switching surfaces and parametric robustness analysis in a unified way.

18. S. Prajna, P. A. Parrilo, and A. Rantzer. “Nonlinear Control Synthesis by Convex Op-
timization.” IEEE Transactions on Automatic Control 49(2):310–314. 2004. A stability
criterion for nonlinear systems, recently derived by the third author, can be viewed as a
dual to Lyapunov’s second theorem. The criterion is stated in terms of a function which can
be interpreted as the stationary density of a substance that is generated all over the state
space and flows along the system trajectories towards the equilibrium. The new criterion
has a remarkable convexity property, which in this paper is used for controller synthesis via
convex optimization. Recent numerical methods for verification of positivity of multivariate
polynomials based on sum of squares decompositions are used.

53

3.2 SBML

3.2.1 Continued Development of libSBML

Expand the Model Consistency Checking Rules and Facilities Although libSBML con-
sistency checks are not expressed directly in OCL, we have created an OCL-like language on top
of the libSBML C++ API. This language balances the readability of OCL with the efficiency and
expressiveness of C++, which is sometimes necessary for more complicated validation procedures.
The language allows the manipulation of only constant C++ objects, which much like OCL, guar-
antees operations will be side-effect free. Further, this guarantee is enforced at compile time. Being
side-effect free is an important property as we do not want the process of consistency checking to
change the state of a model. An example will help make these concepts more clear.

One of the 50 consistency checks currently implemented ensures that if a model author over-
rides the default definition of the substance unit, a special unit name in SBML, the resulting unit
definition is consistent with the notion of a substance. The consistency check constraint is written
as:

START_CONSTRAINT (1202, UnitDefinition, ud)
{
msg =
"A ’substance’ UnitDefinition must simplify to a single "
"Unit of kind ’mole’ or ’item’ with an exponent of ’1’ "
"(L2v1 Section 4.4.3).";

pre(ud.getId() == "substance");

inv(ud.getNumUnits() == 1);
inv(ud.getUnit(0).isMole() || ud.getUnit(0).isItem());
inv(ud.getUnit(0).getExponent() == 1);

}
END_CONSTRAINT

The START CONSTRAINT macro takes three arguments. The first is a number that uniquely
identifies this constraint (i.e., 1202). Assigning such identifiers to each constraint facilitates trace-
ability and allows programmers to easily determine which rules have been violated. The next two
parameters indicate the type of SBML object to which this rule applies (i.e., UnitDefinition) and
a shorthand name to use for the object being checked (i.e., ud).

The body of the constraint consists of a message (msg) to be logged should the SBML object
fail the check. After the message, zero or more preconditions (pre) may be listed. In order for the
rule to apply to the SBML object in question, all preconditions must hold (in the order listed). If a
precondition does not hold, the check is aborted without logging either a passage or failure. Finally,
assuming all preconditions hold, the object’s state must adhere to a set of one or more invariants
(inv). Should any invariant fail, the constraint immediately fails and a message is logged.

In the above example, notice that preconditions and invariants are specified on the (lib)SBML
object model. Each method invocation (operation) does not change the state of the model and
specifies what not how (with apologies made for the standard names used for getter methods, e.g.
getUnit(), which arguably describes how and not what ; even OCL falls victim to this slight, purely
esthetic inconsistency.)

In the course of this project, we implemented all of the model consistency-checking rules origi-
nally envisioned, plus additional checks added during the development of SBML Level 2 Version 2,
which appeared during the time of this project. The total number of consistency-checking rules is
126. The SBML Level 2 Version 2 specification document lists these checks in Appendix C, using

54

a new numbering scheme introduced in Version 2. For the reader’s convenience, these rules are
reproduced below:

General XML validation

10101. An SBML XML file must use UTF-8 as the character encoding. More precisely, the encoding
attribute of the XML declaration at the beginning of the XML data stream cannot have a value
other than “UTF-8”. An example valid declaration is <?xml version="1.0" encoding="UTF-8"?>.

10102. An SBML XML document must not contain undefined elements or attributes in the SBML names-
pace. Documents containing unknown elements or attributes placed in the SBML namespace do not
conform to the SBML Level 2 specification.

General MathML validation

10201. All MathML content in SBML must appear within a math element, and the math element must be
either explicitly or implicitly in the XML namespace “http://www.w3.org/1998/Math/MathML”.

10202. The only permitted MathML 2.0 elements in SBML Level 2 are the following: cn, ci, csymbol,
sep, apply, piecewise, piece, otherwise, eq, neq, gt, lt, geq, leq, plus, minus, times, divide,
power, root, abs, exp, ln, log, floor, ceiling, factorial, and, or, xor, not, degree, bvar,
logbase, sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos,
arctan, arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth, true,
false, notanumber, pi, infinity, exponentiale, semantics, annotation, and annotation-xml.

10203. In the SBML subset of MathML 2.0, the MathML attribute encoding is only permitted on csymbol.
No other MathML elements may have the encoding attribute.

10204. In the SBML subset of MathML 2.0, the MathML attribute definitionURL is only permitted on
csymbol. No other MathML elements may have a definitionURL attribute.

10205. In SBML Level 2, the only values permitted for the definitionURL attribute on a csymbol element
are “http://www.sbml.org/sbml/symbols/time” and “http://www.sbml.org/sbml/symbols/delay”.

10206. In the SBML subset of MathML 2.0, the MathML attribute type is only permitted on the cn
construct. No other MathML elements may have a type attribute.

10207. The only permitted values for the type attribute on MathML cn elements are “e-notation”, “real”,
“integer”, and “rational”.

10208. MathML lambda elements are only permitted as the first element inside the math element of a
FunctionDefinition; they may not be used elsewhere in an SBML model.

10209. The arguments of the MathML logical operators and, or, xor, and not must have boolean values.

10210. The arguments to the following MathML constructs must have a numeric type: plus, minus, times,
divide, power, root, abs, exp, ln, log, floor, ceiling, factorial, sin, cos, tan, sec, csc, cot,
sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, arcsec, arccsc, arccot, arcsinh,
arccosh, arctanh, arcsech, arccsch, arccoth.

10211. The values of all arguments to eq and neq operators should have the same type (either all boolean
or all numeric).

10212. The types of values within piecewise operators should all be consistent: the set of expressions that
make up the first arguments of the piece and otherwise operators within the same piecewise
operator should all return values of the same type.

10213. The second argument of a MathML piece operator must have a boolean value.

55

10214. Outside of a FunctionDefinition, if a ci element is the first element within a MathML apply, then
the ci’s value can only be chosen from the set of identifiers of FunctionDefinitions defined in the
SBML model.

10215. Outside of a FunctionDefinition, if a ci element is not the first element within a MathML apply, then
the ci’s value can only be chosen from the set of identifiers of Species, Compartment, Parameter
or Reaction objects defined in the SBML model.

10216. The id value of a Parameter defined within a KineticLaw can only be used in ci elements within the
MathML content of that same KineticLaw; the identifier is not visible to other parts of the model.

10217. The MathML formulas in the following elements must yield numeric expressions: math in KineticLaw,
stoichiometryMath in SpeciesReference, math in InitialAssignment, math in AssignmentRule,
math in RateRule, math in AlgebraicRule, and delay in Event, and math in .

General identifier validation

10301. The value of the id field on every instance of the following type of object in a model must be
unique: Model, FunctionDefinition, CompartmentType, Compartment, SpeciesType, Species,
Reaction, SpeciesReference, ModifierSpeciesReference, Event, and model-wide Parameters. Note
that UnitDefinition and parameters defined inside a reaction are treated separately.

10302. The value of the id field of every UnitDefinition must be unique across the set of all UnitDefinitions
in the entire model.

10303. The value of the id field of each parameter defined locally within a KineticLaw must be unique
across the set of all such parameter definitions in that KineticLaw.

10304. The value of the variable field in all AssignmentRule and RateRule definitions must be unique
across the set of all such rule definitions in a model.

10305. In each Event, the value of the variable field within every EventAssignment definition must be
unique across the set of all EventAssignments within that Event.

10306. An identifier used as the value of variable in an EventAssignment cannot also appear as the value
of variable in an AssignmentRule.

10307. Every metaid field value must be unique across the set of all metaid values in a model.

10308. The value of a sboTerm attribute must have the data type SBOTerm, which is a string consisting of
the characters ‘S’, ‘B’, ‘O’, ’:’, followed by exactly seven digits.

10309. The syntax of metaid field values must conform to the syntax of the XML type ID.

10310. The syntax of id field values must conform to the syntax of the SBML type SId.

General Annotation validation

10401. Every top-level element within an annotation element must have a namespace declared.

10402. There cannot be more than one top-level element using a given namespace inside a given annotation
element.

10403. Top-level elements within an annotation element cannot use any SBML namespace, whether ex-
plicitly (by declaring the namespace to be one of the URIs “http://www.sbml.org/sbml/level1”,
“http://www.sbml.org/sbml/level2”, or “http://www.sbml.org/sbml/level2/version2”), or
implicitly (by failing to declare any namespace).

56

General Unit validation

10501. The units of the expressions used as arguments to a function call must match the units expected for
the arguments of that function.

10511. When the variable in an AssignmentRule refers to a Compartment, the units of the rule’s right-
hand side must be consistent with the units of that compartment’s size.

10512. When the variable in an AssignmentRule refers to a Species, the units of the rule’s right-hand
side must be consistent with the units of the species’ quantity.

10513. When the variable in an AssignmentRule refers to a Parameter, the units of the rule’s right-hand
side must be consistent with the units declared for that parameter.

10521. When the variable in an InitialAssignment refers to a Compartment, the units of the InitialAs-
signment’s math expression must be consistent with the units of that compartment’s size.

10522. When the variable in an InitialAssignment refers to a Species, the units of the InitialAssignment’s
math expression must be consistent with the units of that species’ quantity.

10523. When the variable in an InitialAssignment refers to a Parameter, the units of the InitialAssign-
ment’s math expression must be consistent with the units declared for that parameter.

10531. When the variable in a RateRule definition refers to a Compartment, the units of the rule’s
right-hand side must be of the form x per time, where x is either the units in that Compartment
definition, or (in the absence of explicit units declared for the compartment size) the default units
for that compartment, and time refers to the units of time for the model.

10532. When the variable in a RateRule definition refers to a Species, the units of the rule’s right-hand
side must be of the form x per time, where x is the units of that species’ quantity, and time refers
to the units of time for the model.

10533. When the variable in a RateRule definition refers to a Parameter, the units of the rule’s right-hand
side must be of the form x per time, where x is the units in that Parameter definition, and time
refers to the units of time for the model.

10541. The units of the math formula in a KineticLaw definition must be the equivalent of substance per
time.

10551. When a value for delay is given in a Event definition, the units of the delay formula must correspond
to either the value of timeUnits in the Event or (if no timeUnits are given), the model’s default
units of time.

General Model validation

10601. The system of equations created from an SBML model must not be overdetermined.

SBML container validation

20101. The sbml container element must declare the XML Namespace for SBML, and this declaration must
be consistent with the values of the level and version attributes on the sbml element.

20102. The sbml container element must declare the SBML Level using the attribute level, and this dec-
laration must be consistent with the XML Namespace declared for the sbml element.

20103. The sbml container element must declare the SBML Version using the attribute version, and this
declaration must be consistent with the XML Namespace declared for the sbml element.

57

Model validation

20201. An SBML document must contain a Model definition. .

20202. The order of subelements within a Model object instance must be the following (where any one may
be optional): listOfFunctionDefinitions, listOfUnitDefinitions, listOfCompartmentTypes,
listOfSpeciesTypes, listOfCompartments, listOfSpecies, listOfParameters,
listOfInitialAssignments, listOfRules, listOfConstraints, listOfReactions, listOfEvents.

20203. The listOf containers in a Model are optional, but if present, the lists cannot be empty. Specifi-
cally, if any of the following are present in a Model, they must not be empty: listOfFunctionDefinitions,
listOfUnitDefinitions, listOfCompartmentTypes, listOfSpeciesTypes, listOfCompartments,
listOfSpecies, listOfParameters, listOfInitialAssignments, listOfRules, listOfConstraints,
listOfReactions and listOfEvents.

20204. If a model defines any Species, then the model must also define at least one Compartment. This is
an implication of the fact that the compartment field on Species is not optional.

FunctionDefinition validation

20301. The top-level element within math in a FunctionDefinition must be lambda.

20302. Inside the lambda of a FunctionDefinition, if a ci element is the first element within a MathML
apply, then the ci’s value can only be chosen from the set of identifiers of other SBML Function-
Definitions defined prior to that point in the SBML model. In other words, forward references to
user-functions are not permitted.

20303. Inside the lambda of a FunctionDefinition, the identifier of that FunctionDefinition cannot appear
as the value of a ci element. SBML functions are not permitted to be recursive.

20304. Inside the lambda of a FunctionDefinition, if a ci element is not the first element within a MathML
apply, then the ci’s value can only be the value of a bvar element declared in that lambda. In
other words, all model entities referenced inside a function definition must be passed arguments to
that function.

20305. The value type returned by a FunctionDefinition’s lambda must be either boolean or numeric.

Unit and UnitDefinition validation

20401. The value of the id field in a UnitDefinition must not be identical to any unit predefined in
SBML. That is, the identifier must not be the same as a value from the UnitKind enumeration
(i.e., “ampere” “gram” “katal” “metre” “second” “watt” “becquerel” “gray” “kelvin” “mole”
“siemens” “weber” “candela” “henry” “kilogram” “newton” “sievert” “coulomb” “hertz” “litre”
“ohm” “steradian” “dimensionless” “item” “lumen” “pascal” “tesla” “farad” “joule” “lux”
“radian” “volt”.)

20402. Redefinitions of the built-in unit substance must be based on the units mole, item, gram, kilogram,
or dimensionless. More formally, a UnitDefinition for substance must simplify to a single Unit
whose kind field has a value of “mole”, “item”, “gram”, “kilogram”, or dimensionless, and whose
exponent field has a value of “1”.

20403. Redefinitions of the built-in unit length must be based on the unit metre or dimensionless. More
formally, a UnitDefinition for length must simplify to a single Unit in which either (a) the kind
field has a value of “metre” and the exponent field has a value of “1”, or (b) the kind field has a
value of “dimensionless” with any exponent value.

20404. Redefinitions of the built-in unit area must be based on squared metres or dimensionless. More
formally, a UnitDefinition for area must simplify to a single Unit in which either (a) the kind field
has a value of “metre” and the exponent field has a value of “2”, or (b) the kind field has a value
of “dimensionless” with any exponent value.

58

20405. Redefinitions of the built-in unit time must be based on second. More formally, a UnitDefinition
for time must simplify to a single Unit in which either (a) the kind field has a value of “second”
and the exponent field has a value of “1”, or (b) the kind field has a value of “dimensionless”
with any exponent value.

20406. Redefinitions of the built-in unit volume must be based on litre, metre or dimensionless. More
formally, a UnitDefinition for volume must simplify to a single Unit in which the kind field value is
either “litre”, “metre”, or “dimensionless”. Additional constraints apply if the kind is “litre”
or “metre”.

20407. If a UnitDefinition for volume simplifies to a Unit in which the kind field value is “litre”, then its
exponent field value must be “1”.

20408. If a UnitDefinition for volume simplifies to a Unit in which the kind field value is “metre”, then its
exponent field value must be “3”.

20409. The listOfUnits container in a UnitDefinition cannot be empty.

20410. The value of the kind field of a Unit can only be one of the predefined units enumerated by UnitKind;
that is, the SBML unit system is not hierarchical and user-defined units cannot be defined using
other user-defined units.

20411. The offset field on Unit previously available in SBML Level 2 Version 1, has been removed as of
SBML Level 2 Version 2.

20412. The predefined unit “Celsius”, previously available in SBML Level 1 and Level 2 Version 1, has
been removed as of SBML Level 2 Version 2.

Compartment validation

20501. The size of a Compartment must not be set if the compartment’s spatialDimensions field has value
0.

20502. If a Compartment definition has a spatialDimensions value of “0”, then its units field must not
be set. If the compartment has no dimensions, then no units can be associated with a non-existent
size.

20503. If a Compartment definition has a spatialDimensions value of “0”, then its constant field value
must either default to or be set to “true”. If the compartment has no dimensions, then its size can
never change.

20504. The outside field value of a Compartment must be the identifier of another Compartment defined
in the model.

20505. A Compartment may not enclose itself through a chain of references involving the outside field.
This means that a compartment cannot have its own identifier as the value of outside, nor can it
point to another compartment whose outside field points directly or indirectly to the compartment.

20506. The outside field value of a Compartment cannot be a compartment whose spatialDimensions
value is “0”, unless both compartments have spatialDimensions=“0”. Simply put, a zero-dimensional
compartment cannot enclose compartments that have anything other than zero dimensions them-
selves.

20507. The value of the units field on a Compartment having spatialDimensions of “1” must be either
“length”, “metre”, “dimensionless”, or the identifier of a UnitDefinition based on either metre
(with exponent equal to “1”) or dimensionless.

20508. The value of the units field on a Compartment having spatialDimensions of “2” must be ei-
ther “area”, “dimensionless”, or the identifier of a UnitDefinition based on either metre (with
exponent equal to “2”) or dimensionless.

59

20509. The value of the units field on a Compartment having spatialDimensions of “3” must be ei-
ther “volume”, “litre”, or the identifier of a UnitDefinition based on either litre, metre (with
exponent equal to “3”), or dimensionless.

20510. If the compartmentType field is given a value in a Compartment definition, it must contain the
identifier of an existing CompartmentType.

Species validation

20601. The value of compartment in a Species definition must be the identifier of an existing Compartment
defined in the model.

20602. If a Species definition sets hasOnlySubstanceUnits to “true”, then it must not have a value for
spatialSizeUnits.

20603. A Species definition must not set spatialSizeUnits if the Compartment in which it is located has
a spatialDimensions value of “0”.

20604. If a Species located in a Compartment whose spatialDimensions is set to “0”, then that Species
definition cannot set initialConcentration.

20605. If a Species is located in a Compartment whose spatialDimensions has value “1”, then that Species
definition can only set spatialSizeUnits to a value of “length”, “metre”, “dimensionless”, or the
identifier of a UnitDefinition derived from metre (with an exponent value of “1”) or “dimensionless”.

20606. If a Species is located in a Compartment whose spatialDimensions has value “2”, then that Species
definition can only set spatialSizeUnits to a value of “area”, “dimensionless”, or the identifier
of a UnitDefinition derived from either metre (with an exponent value of “2”) or “dimensionless”.

20607. If a Species is located in a Compartment whose spatialDimensions has value “3”, then that Species
definition can only set spatialSizeUnits to a value of “volume”, “litre”, “dimensionless”, or
the identifier of a UnitDefinition derived from either litre, metre (with an exponent value of “3”)
or dimensionless.

20608. The value of a Species’s substanceUnits field can only be one of the following: “substance”,
“mole”, “item”, “gram”, “kilogram”, “dimensionless”, or the identifier of a UnitDefinition derived
from “mole” (with an exponent of “1”), “item” (with an exponent of “1”), “gram” (with an
exponent of “1”), “kilogram” (with an exponent of “1”), or “dimensionless”.

20609. A Species cannot set values for both initialConcentration and initialAmount because they are
mutually exclusive.

20610. A Species’ quantity cannot be determined simultaneously by both reactions and rules. More formally,
if the identifier of a Species definition having boundaryCondition=“false” and constant=“false”
is referenced by a SpeciesReference anywhere in a model, then this identifier cannot also appear as
the value of a variable in an AssignmentRule or a RateRule.

20611. A Species having boundaryCondition=“false” cannot appear as a reactant or product in any
reaction if that Species also has constant=“true”.

20612. The value of speciesType in a Species definition must be the identifier of an existing SpeciesType.

20613. There cannot be more than one species of a given SpeciesType in the same compartment of a model.
More formally, for any given compartment, there cannot be more than one Species definition in
which both of the following hold simultaneously: (i) the Species’ compartment value is set to that
compartment’s identifier and (ii) the Species’ speciesType is set the same value as the speciesType
of another Species that also sets its compartment to that compartment identifier.

Parameter validation

20701. The units in a Parameter definition must be a value chosen from among the following: a value from
the UnitKind enumeration (e.g., “litre”, “mole”, “metre”, etc.), a built-in unit (e.g., “substance”,
“time”, etc.), or the identifier of a UnitDefinition in the model.

60

InitialAssignment validation

20801. The value of symbol in an InitialAssignment definition must be the identifier of an existing Com-
partment, Species, or Parameter defined in the model.

20802. A given identifier cannot appear as the value of more than one symbol field across the set of Ini-
tialAssignments in a model.

20803. The value of a symbol field in any InitialAssignment definition cannot also appear as the value of a
variable field in an AssignmentRule.

AssignmentRule and RateRule validation

20901. The value of an AssignmentRule’s variable must be the identifier of an existing Compartment,
Species, or globally-defined Parameter.

20902. The value of a RateRule’s variable must be the identifier of an existing Compartment, Species, or
globally-defined Parameter.

20903. Any Compartment, Species or Parameter whose identifier is the value of a variable field in an
AssignmentRule, must have a value of “false” for constant.

20904. Any Compartment, Species or Parameter whose identifier is the value of a variable field in an
RateRule, must have a value of “false” for constant.

20905. A given identifier cannot appear as the value of more than one variable field across the combined
set of AssignmentRules and RateRules in a model.

20906. There must not be circular dependencies in the combined set of InitialAssignment, AssignmentRule
and KineticLaw definitions in a model. Each of these constructs has the effect of assigning a value to
an identifier (i.e., the identifier given in the field symbol in InitialAssignment, the field variable in
AssignmentRule, and the field id on the KineticLaw’s enclosing Reaction). Each of these constructs
computes the value using a mathematical formula. The formula for a given identifier cannot make
reference to a second identifier whose own definition depends directly or indirectly on the first
identifier.

Constraint validation

21001. A Constraint math expression must evaluate to a value of type boolean.

21002. The order of subelements within Constraint must be the following: math, message. The message
element is optional, but if present, must follow the math element.

Reaction validation

21101. A Reaction definition must contain at least one SpeciesReference, either in its listOfReactants or
its listOfProducts. A reaction without any reactant or product species is not permitted, regardless
of whether the reaction has any modifier species.

21102. The order of subelements within Reaction must be the following (where every one is optional):
listOfReactants, listOfProducts, listOfModifiers, kineticLaw.

21103. The following containers are all optional in a Reaction, but if any present is, it must not be empty:
listOfReactants, listOfProducts, listOfModifiers, kineticLaw.

21104. The list of reactants (listOfReactants) and list of products (listOfProducts) in a Reaction can
only contain speciesReference elements.

21105. The list of modifiers (listOfModifiers) in a Reaction can only contain modifierSpeciesReference
elements.

61

SpeciesReference and ModifierSpeciesReference validation

21111. The value of a SpeciesReference species field must be the identifier of an existing Species in the
model.

21112. The value of a SpeciesReference’s species field must not be the identifier of a Species having both
a constant field value of “true” and a boundaryCondition field value of “false”.

21113. A SpeciesReference must not have a value for both stoichiometry and stoichiometryMath; they
are mutually exclusive.

KineticLaw validation

21121. All species referenced in the KineticLaw formula of a given reaction must first be declared using
SpeciesReference or ModifierSpeciesReference. More formally, if a Species identifier appears in
a ci element of a Reaction’s KineticLaw formula, that same identifier must also appear in at least
one SpeciesReference or ModifierSpeciesReference in the Reaction definition.

21122. The order of subelements within KineticLaw must be the following: math, listOfParameters. The
listOfParameters is optional, but if present, must follow math.

21123. If present, the listOfParameters in a KineticLaw must not be an empty list.

21124. The constant field on a Parameter local to a KineticLaw cannot have a value other than “true”.
The values of parameters local to KineticLaw definitions cannot be changed, and therefore they are
always constant.

21125. The substanceUnits field on KineticLaw, previously available in SBML Level 1 and Level 2 Ver-
sion 1, has been removed as of SBML Level 2 Version 2. In SBML Level 2 Version 2, the substance
units of a reaction rate expression are those of the global “substance” units of the model.

21126. The timeUnits field on KineticLaw, previously available in SBML Level 1 and Level 2 Version 1,
has been removed as of SBML Level 2 Version 2. In SBML Level 2 Version 2, the time units of a
reaction rate expression are those of the global “time” units of the model.

StoichiometryMath validation

21131. All species referenced in the StoichiometryMath formula of a given reaction must first be declared
using SpeciesReference or ModifierSpeciesReference. More formally, if a Species identifier appears
in a ci element of a Reaction’s StoichiometryMath formula, that same identifier must also appear
in at least one SpeciesReference or ModifierSpeciesReference in the Reaction definition.

Event validation

21201. An Event object must have a trigger.

21202. An Event trigger expression must evaluate to a value of type boolean.

21203. An Event object must have at least one EventAssignment object in its listOfEventAssignments.

21204. The value of an Event’s timeUnits must be “time”, “second”, “dimensionless”, or the identifier of
a UnitDefinition derived from either second (with an exponent value of “1”) or “dimensionless”.

21205. The order of subelements within an Event object instance must be the following: trigger, delay,
listOfEventAssignments. The delay element is optional, but if present, must follow trigger.

EventAssignment validation

21211. The value of variable in an EventAssignment can only be the identifier of a Compartment, Species,
or model-wide Parameter definition.

21212. Any Compartment, Species or Parameter definition whose identifier is used as the value of variable
in an EventAssignment must have a value of “false” for its constant field.

62

Integrate a Units Checking and Translation System The beta version of libSBML 3.0
available at the end of the phase of BioSPICE funding contained a unit verification system. This
system operates by converting all units to the base units (which are the SI units), and then verifying
that the resulting overall mathematical system is consistent. The beta release of libSBML has been
available since April, 2006, via the SourceForge.net site for SBML.

Provide an API for SBML Annotations The question arose about what an API for SBML
annotations might look like. We decided to provide a DOM-like approach (where “DOM” is domain
object model, a standard XML interface approach available in many XML parser libraries). This
is not as specific to SBML as might be desired; on the other hand, we could not find a better
approach that balanced SBML specificity against generality such that any kind of annotation (even
future ones unpredictable today) could be handled.

In SBML Level 2 Version 2, the SBML annotations were restricted to one top- level element per
annotation. This restriction was put in place to both make it easier to process existing annotations
and to allow programs to add annotations without clobbering existing annotation data. libSBML
3.0 complements the SBML L2V2 annotation scheme by converting annotation data into an XML
Document Object Model (DOM) data structure. The libSBML XML DOM provides an query API
to search for elements with particular names and/or namespaces so that programmers can quickly
access and manipulate only those annotation elements which are pertinent to their applications.

Provide Additional “Convenience” APIs LibSBML 3.0 provides several APIs for working
with SBML’s UnitDefinitions, XML DOMs, and extending the libSBML parser. UnitDefinitions
can be queried for equivalence classes (e.g., isVariantOfMass()). The XML DOM API provides
a convenient way to store, process, and round-trip any XML that libSBML does not understand.
Finally, programmers may register additional handlers with the parser to create custom data struc-
tures for XML content that would be too large or inconvenient to store and manipulate as an
XML DOM. This is how the libSBML Layout extension has been implemented and plugged-into
libSBML.

Implement Support for RDF and Metadata in SBML RDF Metadata support is still in
progress for libSBML 3.0. The SBML L2V2 specification recommends a particular form and struc-
ture for annotations. This scheme establishes a canonical form for RDF metadata annotations as
they pertain to SBML (in the same way that SBML restricts XML as it pertains to biochemical
reaction networks). Currently, libSBML defaults to XML DOM construction for RDF metadata.
While this default implementation is operable, we believe we can a better experience for program-
mers. We are currently reviewing API designs to query and manipulate the L2V2 structure in a
more straightforward manner.

Support “Within-SBML” Translations Many software tools supporting SBML do not sup-
port all features of the language. However, in the case of some of these features, it is actually
possible to “translate” the model to an equivalent model that uses different features within SBML.
The development of libSBML has considered the need to perform such translations and has focussed
on providing a framework whereby such translation is possible.

One area where there is little support is the area of units. The majority of tools cannot deal
with units on quantities in a model, and thus any models where the user has used either a mix
of units or less common units cannot be simulated correctly by many tools. The development of
libSBML has focussed on the validation of the units used in a model, both in terms of mathematical

63

manipulation (for example checking that formulae used do not add quantities of differing units)
and the appropriate overall units resulting from a formula (for example checking that a formula
assigning a value to a compartment volume has units of volume). However, the framework developed
to provide this validation can be used to change units within the model and thus translate a model
with a variety of units into a model with consistent units.

Another feature not supported by many tools is the user defined function. Again, focussing
on validation, libSBML provides a framework that could be used to replace user defined functions
with their intended functionality directly into any math element using the function.

Our progress to date in this area has been to rework the internal libSBML implementation to
support these kinds of operations. While libSBML does not as yet provide a direct API for per-
forming these translations, the framework has been rigorously constructed to facility their addition.

Support Translating SBML Level 2 down to SBML Level 1 Some models written in
SBML Level 2 could be written in SBML Level 1 and thus made available to those tools only
supporting SBML L1. libSBML provides the facility to perform this translation where appropriate.

libSBML stores an SBML model as an object with associated values. While obviously the
level and version of SBML are as part of this object, the individual values are not level specific.
For example the initialAmount or initialConcentration value of a species, which are mutually
exclusive, have only one associated variable and the intention of the user, concentration or amount,
is recorded by means of flags. When libSBML outputs a model it outputs the attributes and
associated values appropriate for the level and version of SBML. This allows a user to change the
level of a model after it has been read in via the setLevel() function and the on outputting the
model written out will be of the desired level. The user need make no other alteration to the model.

However, there is a subset of models written in SBML Level 2 that cannot be written as valid
SBML Level 1 models; for example, models that use components such as events. In order to prevent
these models being written out in SBML Level 1 with missing information, libSBML uses a instance
of the validator class (used for the validation of SBML within libSBML) which applies a number
of rules to the model to determine whether it is compatible with Level 1. This class object is
called when libSBML detects a request for a change of level from 2 to 1 and if the model fails the
compatibility tests this is reported to the user and the level of the model object in libSBML is not
changed.

Support SBML Level 2 Version 2, Expected to Be Introduced in 2005 LibSBML 3.0
beta supports SBML Level 2 Version 2. The beta version was made available in April 2006,
corresponding to a draft of SBML Level 2 Version 2 available at that time. The final Version 2
specification was not issued until September 2006, and the final libSBML 3.0 supports the final
Version 2 specification.

3.2.2 Support of SBML Use and Evolution

Coordination of Annotations In the last year of the BioSPICE project, we surveyed the
BioSPICE user community and the broader SBML community about the annotations in use, and
reported this on a web page on the sbml.org project website. We summarize the results of this
survey below.

• JigCell (http://jigcell.biol.vt.edu). This set of annotations is used by the JigCell
software system to add information about rate laws and conservation laws in a model.

64

• JDesigner (http://www.sys-bio.org/software/jdesigner.htm) JDesigner is a Win32 ap-
plication which allows one to draw a biochemical network and export the network in the
form of SBML. JDesigner has an SBW interface that allows it to be called from other SBW
compliant modules, for example Python. In addition, JDesigner has the ability to use Jarnac
as a simulation server (via SBW) thus allowing models to be run from within JDesigner. This
annotation also includes provision for named rate laws (see UPenn BioCharon annotations).

• BioCharon (http://www.cis.upenn.edu/biocomp/Hybrid) We are using a list of rate laws
that were part of the SBML Level 1 specification, but we add reaction types that appear useful
as we try to annotate various models. The primary purpose is to facilitate the automated
construction of hybrid approximations to biochemical network models described in SBML
files. However, the issue of easily recognizing common reaction law types is also faced by other
software that uses SBML. The annotations include the terms ConstantLaw, MassActionLaw,
MichaelisMentenLaw, HillLaw, and MichaelisMentenReversibleLaw.

• Karyote (http://biodynamics.indiana.edu/cyber_cell/) The dynamics of a living cell
are modeled using a comprehensive reaction, transport, genomic approach. The calibration
of the model and the difficulty arising from the incompleteness of our (and any) model of such
a complex system are addressed via an information theory approach. Species annotations
contain internal ids of the species in the Karyote database.

• SBML Layout Extension (http://projects.eml.org/bcb/sbml/) At the 9th SBML Forum
in Heidelberg, Oct. 2005, this was voted as the recommended approach for storing diagrams
in SBML. The recommendation is to use annotations to store the information in SBML Level
2. In SBML Level 3, it will become a standard package; when this happens, the tags will no
longer have to be placed inside annotations but instead will be graduated to top-level SBML
status.

• BioUML (http://www.biouml.org/index.shtml) BioUML is Java framework for systems
biology. It spans the comprehensive range of capabilities including access to databases with
experimental data, tools for formalized description of biological systems structure and func-
tioning, as well as tools for their visualization and simulations. Developed a diagram layout
extension for use with the BioUML Workbench.

• BioModels Database (http://biomodels.net/biomodels) Biomodels is a database of quan-
titative models in biology. The current format to feed the database and to export the results
is SBML Level 2 Version 1. Annotations used are ”submitter” (dc:contributor plus vCard),
”creator” (dc:creator plus vCard) and links to other resources (dc:relation, cf. proposal of
Andrew Finney and Nicolas Le Novre 2004)

• MOMA (http://arep.med.harvard.edu/fluxns) Metabolic flux analysis requires the abil-
ity to constrain reaction fluxes so that a feasible space can be obtained. The current SBML
specification does not have a natural place for this information, so we add it to annotation.
In the future, we expect this will be replaced by a general-purpose constraints specification.

BioPAX and SBML During the BioSPICE phase of libSBML funding, we initiated an effort to
define a proposal for how to connect SBML and BioPAX. We reached the point of defining three
general approaches. The efforts then stalled because there were no consumers of BioPAX-format
pathway representations at the time, and therefore it was impossible to assertain which approach
would be more suitable for real software tools. The BioPAX-SBML effort was put on hold until

65

such time as there exist software systems that can import BioPAX-formatted pathway data. This
goal of the original project remains unmet.

4 Summary

4.1 Sum of Squares (SOS) Framework and SOSTOOLS

The overall long-term objective of our research has been to develop mathematical and software
infrastructure in support of post-genomics research in systems biology, including a deeper under-
standing of the organizational principles of biological networks. A distinguishing theme of this work
is its focus on scalable methods of robustness and model (in)validation with data, as opposed to
relying purely on simulation. In computability terms, if simulation is viewed as a way to attack the
NP hard side of biological problems, our approach attacks the coNP side. Much of the success of
reductionist biology has depended on creative individuals who draw biologically meaningful infer-
ences from data and computation using small scale and informal reasoning. This type of inference
was critical because the reductionist research program itself offered no systematic tools to deal with
complexity, only with the component parts. Far from being dispensed with, this reasoning process
and its biological content must be both formalized and made rigorous, systematic, and scalable
as well, and ultimately teachable. This requires the development of new mathematics as well as
algorithms and software.

A central goal of modeling and simulation is to connect molecular mechanisms to network
function to questions of biomedical relevance. Unfortunately, many of the most critical questions
involve events which are extremely rare at the individual cell level where the mechanisms act
yet catastrophic to the organism. Thus simulation methods that may be adequate for studying
generic or typical behavior are entirely inadequate to explore such worst-case scenarios, which with
conventional methods are computational intractable. We have extended the best-practice tools
and algorithms for robustness analysis that have become standards in engineering to models of
biological relevance, which are typically nonlinear, hybrid, uncertain, and stochastic [34]. This
includes SOSTOOLS, an open source software implementation [92].

4.2 SBML

Computational modeling is becoming crucial for making sense of the vast quantities of complex ex-
perimental data that are now being collected. The systems biology community needs agreed-upon
information standards if models are to be shared, evaluated and developed cooperatively. The Sys-
tems Biology Markup Language (SBML) is an XML-based format for representing computational
models in a way that can be used by different software systems to communicate and exchange those
models. It is supported today by over 100 software tools worldwide and a vibrant community of
modelers and software authors. A variety of resources are available for working with SBML; there
is also an Internet MIME type defined for SBML [56] and a new public database of models based
around SBML [8].

In support of SBML and its community, we continue to develop and make available software in-
frastructure, including programming libraries, conversion utilities, interface packages for commonly-
used software environments, and easy-to-access Internet-accessible online tools. All of our software
development follows the open-source tradition to maximize the accessibility and utility of the prod-
ucts.

We note with satisfaction that the open-source model of software development has been yielding
dividends for libSBML. The user community has contributed not only several bug fixes, but new

66

code as well. These include: support for the Expat parser library, a full Perl API, a full Lisp API,
and an extension to support the use of a provisional SBML standard for storing model diagrams.

The libSBML open-source license allows it to be incorporated freely into other programs in
whole or part. Several simulator programs and projects developed in academia already make use
of libSBML to support both SBML import and export. It is worth mentioning that since libSBML
is distributed under the terms of the Lesser GNU Public License (LGPL) it may also be used
without restriction in commercial applications [39]. We currently know of two commercial software
applications using libSBML.

67

References

[1] B. Alberts et al., Molecular Biology of the Cell, Garland Publishing, New York, 2002.

[2] A. Arkin, J. Ross, and H. McAdams, Stochastic kinetic analysis of the developmental pathway
bifurcation in phage λ-infected escehrichia coli cells, Genetics, 149 (1998), pp. 1633–1648.

[3] R. Ausbrooks, S. Buswell, S. Dalmas, S. Devitt, A. Diaz, R. Hunter, B. Smith, N. Soif-
fer, R. Sutor, and S. Watt, Mathematical markup language (MathML) version 2.0: W3C Recom-
mendation 21 February 2001, 2001. Available on the Internet at http://www.w3.org/TR/2001/REC-
MathML2-20010221.

[4] G. D. Bader, E. Brauner, M. P. Cary, R. Goldberg, C. Hogue, P. Karp, T. Klein,
J. Luciano, D. Marks, N. Maltsev, E. Marland, E. Neumann, S. Paley, J. Rick, A. Regev,
A. Rzhetsky, C. Sander, V. Schachter, I. Shah, and J. Zucker, BioPAX–Biological Pathways
Exchange language. Level 1, Version 1.4 documentation. Available on the Internet at http://www.
biopax.org, 2005.

[5] M. Barahona, A. C. Doherty, M. Sznaier, H. Mabuchi, and J. C. Doyle, Finite horizon
model reduction and the appearance of dissipation in hamiltonian systems, in Proc. of IEEE Conference
on Decision and Control, 2002.

[6] K. Beck, Test Driven Development: By Example, Addison-Wesley Professional, 2002.

[7] D. Bertsimas and I. Popescu, Optimal inequalities in probability: A convex optimization approach.
INSEAD working paper, available at http://www.insead.edu/facultyresearch/tm/popescu/,
1999–2001.

[8] BioModels Team, The BioModels database. Available via the World Wide Web at http://www.
ebi.ac.uk/biomodels., 2005.

[9] BioPAX Working Group, Biopax: Biological pathways exchange. Available on the Internet at
http://www.biopax.org, 2005.

[10] K. M. Bobba, B. Bamieh, and J. C. Doyle, Robustness and Navier-Stokes Equations, in In
Proceedings of the 41st IEEE Conference on Decision and Control, 2002.

[11] K. M. Bobba, J. C. Doyle, and M. Gharib, A reynolds number independent model for turbulence
in couette flow, in Proc. of IUTAM Symposium on Reynolds Number Scaling in Turbulent Flows, 2002.

[12] , Stochastic input-output measures for transition to turbulence, in Proc. of AIAA Aerospace Sci-
ences Meeting, AIAA Paper No. 2003-0786, 2003.

[13] , Techniques for simplifying multiscale, linear fluid dynamics problems, in Proc. of SIAM Confer-
ence on Applied Linear Algebra, 2003.

[14] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Springer, 1998.

[15] J. Bosak and T. Bray, XML and the second-generation web, Scientific American, (1999).

[16] J. M. Bower and H. Bolouri, Computational Modeling of Genetic and Biochemical Networks, MIT
Press, Cambridge, Mass., 2001.

[17] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System
and Control Theory, Society for Industrial and Applied Mathematics (SIAM), 1994.

[18] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler, Extensible markup language
(XML) 1.0 (second edition), W3C recommendation 6-October-2000, tech. rep., 2000. Available on the
Internet at http://www.w3.org/TR/1998/REC-xml-19980210.

[19] S. L. Campbell, Singular Systems of Differential Equations, Pitman, Boston, MA, 1980.

[20] J. M. Carlson and J. C. Doyle, Highly Optimized Tolerance: a mechanism for power laws in
designed systems, Physical Review E, 60 (1999), pp. 1412–1428.

68

[21] , Highly Optimized Tolerance: Robustness and design in complex systems, Physical Review Let-
ters, 84 (2000), pp. 2529–2532.

[22] J. M. Carlson and J. C. Doyle, Complexity and robustness, in Proc. Natl. Acad. Sci. USA, 99,
Suppl. 1, 2002, pp. 2538–2545.

[23] M. D. Choi, T. Y. Lam, and B. Reznick, Sum of squares of real polynomials, Proceedings of
Symposia in Pure Mathematics, 58 (1995), pp. 103–126.

[24] M. Csete and J. Doyle, Bowties, metabolism, and disease, Trends in Biotechnology, 22 (2004),
pp. 446–450.

[25] M. E. Csete and J. C. Doyle, Reverse engineering of biological complexity, Science, 295 (2002),
pp. 1664–1669.

[26] L. Dai, Singular Control Systems, Springer-Verlag, New York, 1989.

[27] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press,
New York, 1975.

[28] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Distinguishing separable and entangled
states, Physical Review Letters, 88 (2002).

[29] J. C. Doyle and J. M. Carlson, Power laws, Highly Optimized Tolerance and generalized source
coding, Physical Review Letters, 84 (2000), pp. 5656–5659.

[30] G. Dullerud and R. Smith, A nonlinear functional approach to LFT model validation, Systems
and Control Letters, 47 (2002), pp. 1–11.

[31] H. El-Samad, M. Khammash, H. Kurata, and J. Doyle, Robustness analysis of the heat shock
response in e. coli, in Proceedings of the American Control Conference, 2002, pp. 1742–1747.

[32] H. El-Samad, H. Kurata, J. Doyle, C. Gross, and M. Khammash, Surviving heat shock:
Control strategies for robustness and performance, Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 2736–
2741.

[33] H. El-Samad, A. Papachristodoulou, S. Prajna, J. C. Doyle, and M. H. Khammash,
Advanced methods and algorithms for biological networks analysis, Proceedings of the IEEE, (2006).
To appear.

[34] H. El-Samad, S. Prajna, A. Papachristodoulou, M. H. Khammash, and J. C. Doyle,
Model validation and robustness analysis of the bacterial heat shock response using SOSTOOLS, in
Proceedings IEEE Conference on Decision and Control, 2003.

[35] R. Feeley, P. Seiler, A. Packard, and M. Frenklach, Consistency of a reaction data set,
Journal of Physical Chemistry A, 108 (2004), pp. 9573–9583.

[36] E. Feron, P. Apkarian, and P. Gahinet, Analysis and synthesis of robust control systems
via parameter-dependent Lyapunov functions, IEEE Transactions on Automatic Control, 41 (1996),
pp. 1041–1046.

[37] A. Finney, M. Hucka, and H. Bolouri, Systems Biology Markup Language (SBML) Level 2:
Structures and facilities for model definitions. Available via the World Wide Web at http://sbml.
org/documents/, 2002.

[38] A. Finney, M. Hucka, H. Sauro, H. Bolouri, A. Funahashi, B. Bornstein, B. Kovitz,
J. Matthews, B. E. Shapiro, S. Keating, J. Doyle, and H. Kitano, The systems biology
workbench (sbw) version 1.0: Framework and modules, Jan, 2003 2003.

[39] Free Software Foundation, The GNU lesser general public license. Available via the World Wide
Web at http://www.fsf.org/licenses/licenses.html, 1999.

[40] M. Frenklach, A. Packard, P. Seiler, and R. Feeley, Collaborative data processing in devel-
oping predictive models of complex reaction systems, International Journal of Chemical Kinetics, 36
(2004), pp. 57–66.

69

[41] K. Gatermann and P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares,
2002. In preparation.

[42] D. Gillespie, The chemical langevin equation, J. Chem. Phys, 113 (2000), pp. 297–306.

[43] S. Glavaski, A. Papachristodoulou, and K. Ariyur, Safety verification of controlled advanced
life support system using barrier certificates, in Hybrid Systems: Computation and Control, 2005.

[44] D. Grigoriev and N. Vorobjov, Complexity of Null- and Positivstellensatz proofs, Annals of Pure
and Applied Logic, 113 (2002), pp. 153–160.

[45] S. B. W. D. Group, The systems biology workbench development group, 2001.

[46] J. Hasty, J. Pradines, M. Dolnik, and J. J. Collins, Noise-based switches and amplifiers for
gene expression, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 2075–2080.

[47] W. J. Hedley, M. R. Nelson, D. Bullivant, A. Cuellar, Y. Ge, M. Grehlinger, K. Jim,
S. Lett, D. Nickerson, P. Nielsen, and H. Yu, CellML specification, tech. rep., 2001. Available
on the Internet at http://www.cellml.org/public/specification/20010810/cellml specification.html.

[48] W. J. Hedley, M. R. Nelson, D. P. Bullivant, and P. F. Nielson, A short introduction to
CellML, Philosophical Transactions of the Royal Society of London A, 359 (2001), pp. 1073–1089.

[49] H. Hermjakob, The HUPO PSI’s molecular interaction format—a community standard for the rep-
resentation of protein interaction data, Nature Biotechnology, 22 (2004), pp. 177–183.

[50] M. Hucka, A. Finney, B. Bornstein, S. Keating, B. Shapiro, J. Matthews, B. Kovitz,
M. Schilstra, A. Funahashi, J. Doyle, and H. Kitano, Evolving a lingua franca and associated
software infrastructure for computational systems biology: The Systems Biology Markup Language
(SBML) project, Systems Biology, 1 (2004), pp. 41–53.

[51] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,
M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr, P. J.
Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novre, L. M.
Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson,
P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang, The Systems Biology Markup
Language (SBML): A medium for representation and exchange of biochemical network models, Bioin-
formatics, 19 (2003), pp. 524–531.

[52] Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. K. Packard, Some controls applica-
tions of sum of squares programming, in Proceedings of the IEEE Conference on Decision and Control,
2003.

[53] D. Jibetean and E. de Klerk, Global optimization of rational functions: A semidefinite program-
ming approach. CWI Technical Report, 2003.

[54] H. K. Khalil, Nonlinear Systems, Prentice Hall, Inc., second ed., 1996.

[55] H. Kitano, Cancer as a robust system: implications for anticancer therapy, Nature Reviews Cancer,
4 (2004), pp. 227–235.

[56] B. Kovitz, RFC 3823: MIME media type for the Systems Biology Markup Language (SBML), 2004.
Available on the Internet at http://www.faqs.org/rfcs/rfc3823.html.

[57] H. Kurata, H. El-Samad, T. Yi, M. Khammash, and J. Doyle, Feedback regulation of the heat
shock response in e. coli, in Proceedings of the 40th IEEE Conference on Decision and Control, 2001,
pp. 837–842.

[58] H. J. Kushner, Stochastic Stability and Control, Academic Press, New York, 1967.

[59] A. D. Lander, A calculus of purpose, PLoS Biology, 2 (2004), pp. 0712–0714.

70

[60] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim.,
11 (2001), pp. 796–817.

[61] O. Lassila and R. Swick, Resource description framework (RDF) model and syntax specification,
1999. Available on the Internet at http://www.w3.org/TR/REC-rdf-syntax/.

[62] L. Li, D. Alderson, J. Doyle, and W. Willinger, A first-principles approach to understanding
the internet’s router-level topology, in ACM SIGCOMM, 2004.

[63] J. Lofberg and P. A. Parrilo, From coefficients to samples: a new approach in SOS optimization,
in Proceedings of the 43rd IEEE Conference on Decision and Control, 2004.

[64] S. H. Low, F. Paganini, and J. C. Doyle, Internet congestion control, IEEE Control Systems
Magazine, 22 (2002), pp. 28–43.

[65] S. H. Low, F. Paganini, J. Wang, S. A. Adlakha, and J. C. Doyle, Dynamics of TCP/AQM
and a scalable control, in Proc. of IEEE Infocom, June 2002. http://netlab.caltech.edu.

[66] H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill,
M. Roukes, and A. Scherer, Quantum networks based on cavity qed, Quantum Information and
Computation, 1 (2001), pp. 7–12.

[67] A. Megretski and A. Rantzer, System analysis via integral quadratic constraints, IEEE Transac-
tions on Automatic Control, 42 (1997), pp. 819–830.

[68] P. Mendes, Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3, Trends in
Biological Science, 22 (1997), pp. 361–363.

[69] P. Mendes, Gepasi 3.21. Available on the Internet at http://www.gepasi.org, 2001.

[70] M. Morita, Y. Tanaka, T. Kodama, Y. Kyogoku, H. Yanagi, and T. Yura, Translational
induction of heat shock transcription factor σ32: Evidence for a built-in rna thermosensor, Genes &
Dev., 13 (1999), pp. 655–665.

[71] Y. Nesterov, Squared functional systems and optimization problems, in High Performance Opti-
mization, J. Frenk, C. Roos, T. Terlaky, and S. Zhang, eds., Kluwer Academic Publishers, 2000,
pp. 405–440.

[72] B. Øksendal, Stochastic Differential Equation: An Introduction with Applications, Springer-Verlag,
Berlin, 2000.

[73] A. Packard, Gain scheduling via linear fractional transformations, Syst. Control Lett., 22 (1994),
pp. 79–92.

[74] F. Paganini, J. C. Doyle, and S. H. Low, Scalable laws for stable network con-
gestion control, in Proceedings of Conference on Decision and Control, December 2001.
http://www.ee.ucla.edu/ paganini.

[75] F. Paganini, Z. Wang, S. H. Low, and J. C. Doyle, A new tcp/aqm for stable operation in fast
networks, in Proceedings of IEEE Infocom, San Francisco, 2003.

[76] A. Papachristodoulou and S. Prajna, On the construction Lyapunov functions using the sum of
squares decomposition, in Proceedings IEEE Conference on Decision and Control, 2002.

[77] , Analysis of non-polynomial systems using the sum of squares decomposition, in Positive Poly-
nomials in Control, D. Henrion and A. Garulli, eds., Springer-Verlag, 2005, ch. 3, pp. 23–44.

[78] P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness
and Optimization, PhD thesis, California Institute of Technology, Pasadena, CA, 2000.

[79] , Semidefinite programming relaxations for semialgebraic problems, Mathematical Programming
Series B, 96 (2003), pp. 293–320.

[80] P. A. Parrilo and R. Peretz, An inequality for circle packings proved by semidefinite programming,
Discrete and Computational Geometry, 31 (2004).

71

[81] P. A. Parrilo and B. Sturmfels, Minimizing polynomial functions, in Workshop on Algorithmic
and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, March,
1998.

[82] K. Poolla, P. Khargonekar, A. Tikku, J. Krause, and K. Nagpal, A time-domain approach
to model validation, IEEE Transactions on Automatic Control, 39 (1994), pp. 951–959.

[83] S. Prajna, Barrier certificates for nonlinear model validation. To appear in Proceedings IEEE Con-
ference on Decision and Control, 2003.

[84] , Barrier certificates for nonlinear model validation, Automatica, 42 (2006), pp. 117–126.

[85] S. Prajna and A. Jadbabaie, Safety verification of hybrid systems using barrier certificates, in
Hybrid Systems: Computation and Control, LNCS 2993, Springer-Verlag, Heidelberg, 2004, pp. 477–
492.

[86] , Methods for safety verification of time-delay systems, in Proceedings of the IEEE Conference
on Decision and Control, 2005.

[87] S. Prajna, A. Jadbabaie, and G. J. Pappas, Stochastic safety verification using barrier certificates,
in Proceedings of the IEEE Conference on Decision and Control, 2004.

[88] , A framework for worst-case and stochastic safety verification using barrier certificates. Submit-
ted to IEEE Transactions on Automatic Control, 2005.

[89] S. Prajna and A. Papachristodoulou, Analysis of switched and hybrid systems – beyond piecewise
quadratic methods, in Proceedings of the American Control Conference, 2003.

[90] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, Introducing SOSTOOLS: A general
purpose sum of squares programming solver, in Proceedings IEEE Conference on Decision and Control,
2002.

[91] , SOSTOOLS – Sum of Squares Optimization Toolbox, User’s Guide. Available at http://www.
cds.caltech.edu/sostools and http://www.aut.ee.ethz.ch/~parrilo/sostools, 2002.

[92] , SOSTOOLS: Sum of squares optimization toolbox for MATLAB. Available from
http://www.cds.caltech.edu/sostools and http: //www.aut.ee.ethz.ch/~parrilo/sostools,
2002.

[93] S. Prajna, P. A. Parrilo, and A. Rantzer, Nonlinear control synthesis by convex optimization.
To appear in IEEE Transactions on Automatic Control, 2004.

[94] S. Prajna and A. Rantzer, On the necessity of barrier certificates, in Proceedings of the IFAC
World Congress, 2005. To appear.

[95] , Primal-dual tests for safety and reachability, in Hybrid Systems: Computation and Control,
Springer-Verlag, 2005. To appear.

[96] M. Ptashne, A Genetic Switch: Phage λ and Higher Organisms, Blackwell Scientific Publications
and Cell Press, Cambridge, MA, 1992.

[97] B. Rahn, A. C. Doherty, and H. Mabuchi, Exact and approximate analysis of concatenated quan-
tum codes, in Proc. of the Sixth International Conference on Quantum Communication, Measurement,
and Computing, 2002.

[98] A. Rantzer and P. A. Parrilo, On convexity in stabilization of nonlinear systems, in Proceedings
of the 39th IEEE Conf. on Decision and Control, vol. 3, 2000, pp. 2942–2945.

[99] C. Rao and A. Arkin, Stochastic chemical kinetics and the quasi-steady-state assumption: Applica-
tion to the gillespie algorithm, J. Chem. Phys., 118 (2003), pp. 4999–5010.

[100] D. Reynolds, J. Carlson, and J. Doyle, Design degrees of freedom and mechanisms for complex-
ity, Phys. Rev. E, 66 (2002), p. 016108.

72

[101] B. Reznick, Extremal PSD forms with few terms, Duke Mathematical Journal, 45 (1978), pp. 363–374.

[102] , Some concrete aspects of Hilbert’s 17th problem, in Contemporary Mathematics, vol. 253, Amer-
ican Mathematical Society, 2000, pp. 251–272.

[103] M. Schweighofer, Optimization of polynomials on compact semialgebraic sets. Preprint, 2003.

[104] P. Seiler, Stability region estimates for SDRE controlled systems using sum-of-squares optimization,
in Proceedings of the American Control Conference, 2003.

[105] J. Shamma and M. Athans, Analysis of gain scheduled control for nonlinear plants, IEEE Transac-
tions on Automatic Control, 35 (1990), pp. 898–907.

[106] M. Shea and G. Ackers, The or control system in bacteriophage lambda: A physical-chemical model
for gene regulation, J. Mol. Biol., (1985), pp. 211–230.

[107] N. Z. Shor, Class of global minimum bounds of polynomial functions, Cybernetics, 23 (1987), pp. 731–
734.

[108] R. S. Smith and J. C. Doyle, Model validation: a connection between robust control and identifi-
cation, IEEE Transactions on Automatic Control, 37 (1992), pp. 942–952.

[109] SourceForge.net, The SourceForge open source software development web site. Available on the
Internet at http://www.sourceforge.net/, 2002.

[110] P. T. Spellman, M. Miller, J. Stewart, C. Troup, U. Sarkans, S. Chervitz, D. Bernhart,
G. Sherlock, C. Ball, M. Lepage, M. Swiatek, W. L. Marks, J. Goncalves, S. Markel,
D. Iordan, M. Shojatalab, A. Pizarro, J. White, R. Hubley, E. Deutsch, M. Senger, B. J.
Aronow, A. Robinson, D. Bassett, C. J. S. Jr, and A. Brazma, Design and implementation
of microarray gene expression markup language (MAGE-ML), Genome Biology, 3 (2002), pp. 0046.1–
0046.9.

[111] J. Stelling, U. Sauer, Z. Szallasi, F. Doyle, and J. Doyle, Robustness of cellular functions,
Cell, 118 (2004), pp. 675–685.

[112] G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Mathematische
Annalen, 207 (1974), pp. 87–97.

[113] D. Straus, W. Walter, and C. Gross, Dnak, dnaj, and grpe heat shock proteins negatively regulate
heat shock gene expression by controlling the synthesis and stability of σ32, Genes Dev., 4 (1990),
pp. 2202–2209.

[114] L. Strömbäck and P. Lambrix, Representations of molecular pathways: An evaluation of SBML,
PSI MI and BioPAX, Bioinformatics, 21 (2005), pp. 4401–4407.

[115] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Op-
timization Methods and Software, 11–12 (1999), pp. 625–653. Available at http://fewcal.kub.nl/
sturm/software/sedumi.html.

[116] B. Sturmfels, Solving Systems of Polynomial Equations, American Mathematical Society, 2002.

[117] M. Sznaier, A. C. Doherty, M. Barahona, H. Mabuchi, and J. C. Doyle, A new bound of the
l2[0, t]-induced norm and applications to model reduction, in Proc. of the American Control Conference,
2002.

[118] R. Tanaka and J. Doyle, Scale-rich metabolic networks: background and introduction, tech. rep.,
arXiv:q-bio.MN/0410009, 2004.

[119] A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, Springer-
Verlag, London, 2000.

[120] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), pp. 49–95.

[121] J. Wang, L. Li, S. H. Low, and J. C. Doyle, Can tcp and shortest path routing maximize utility?,
in Proceedings of IEEE Infocom, San Francisco, 2003.

73

[122] H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Handbook of Semidefinite Programming,
Kluwer, 2000.

[123] V. A. Yakubovic, S-procedure in nonlinear control theory, Vestnik Leningrad University, 4 (1977),
pp. 73–93. English translation; original Russian publication in Vestnik Leningradskogo Universiteta,
Seriya Matematika, Leningrad, Russia, 1971, pp. 62–77.

[124] Y. Yamada and J. Primbs, Distribution based option pricing on lattice asset dynamics models, in
Proc of the 2001 American Control Conference, 2000, pp. 3393–3397.

[125] , Construction of multinomial lattices for optimal hedges, in Proc. of the International Conference
on Computational Science, 2001.

[126] , Construction of multinomial lattices for optimal hedges, in Lecture Note Series on Computer
Science, Springer Verlag, 2001, pp. 579–588.

[127] , Risk estimates for dynamic hedging using convex probability bounds, in Proc of the 2001 American
Control Conference, 2001.

[128] , Distribution based option pricing on lattice asset dynamics models, International Journal of
Theoretical and Applied Finance, 5 (2002), pp. 599–618.

[129] T.-M. Yi, M. Fazel, X. Liu, T. Otitoju, J. Goncalves, A. Papachristodoulou, S. Prajna,
and J. Doyle, Application of robust model validation using SOSTOOLS to the study of G-protein
signaling in yeast, in Proc. Foundations of Systems Biology and Engineering, August 2005.

[130] T.-M. Yi, Y. Huang, M. Simon, and J. C. Doyle, Robust perfect adaptation in bacterial chemo-
taxis through integral feedback control, in Proceedings of the National Academy of Sciences, USA,
vol. 97, 2000, pp. 4649–4653.

[131] T.-M. Yi, H. Kitano, and M. I. Simon, A quantitative characterization of the yeast heterotrimeric
g protein cycle, Proc. Natl Acad Sci U.S.A., 100, pp. 10764–9.

[132] T. Zhou, J. Carlson, and J. Doyle, Mutation, specialization, and hypersensitivity in highly opti-
mized tolerance, Proc. Nat. Acad. Sci., 99 (2002), pp. 2049–2055.

[133] X. Zhu, J. Yu, and J. C. Doyle, Heavy tails, generalized coding, and optimal web layout, in
Proceedings of IEEE Infocom, April 2001.

74

